The main class of high-temperature superconductors are in the class of copper oxides (only some particular copper oxides) especially the Rare-earth barium copper oxides (REBCOs) such as Yttrium barium copper oxide (YBCO).
<h3>What superconducting material works with the highest temperature?</h3>
As of 2020, the material with the highest accepted superconducting temperature is an extremely pressurized carbonaceous sulfur hydride with a critical transition temperature of +15°C at 267 GPa.
<h3>How do high-temperature superconductors work?</h3>
High-temperature superconductivity, the ability of certain materials to conduct electricity with zero electrical resistance at temperatures above the boiling point of liquid nitrogen, was unexpectedly discovered in copper oxide (cuprate) materials in 1987.
Learn more about high temperature superconductors here:
<h3>
brainly.com/question/1657823</h3><h3 /><h3>#SPJ4</h3>
Answer: 4.05 mol O2, 15.36 mol H2O
Explanation:
I can answer each question individually if you post them individually.
2a. 3.24 mol NH3 * (5 mol O2 / 4 mol NH3) = 4.05 mol O2
2b. 12.8 mol O2 ( 6mol H2O/ 5 mol O2) = 15.36 mol H2O
Essentially what I did was dimensional analysis. Multiplying in a way that the units cancel out so the only thing remains is what each question asks for.
Answer: “Formaldehyde” is emitted from most manufactured building materials and furniture.
2.1653 g
Explanation:
The molar mass of Rubidium is;
85.468 g/mol
Therefore the moles of Rubidium that reacted with oxygen is;
1.98 / 85.468
= 0.0232 moles
If every two moles of Rubidium reacts with one mole of oxygen then the amount of oxygen consumed in the chemical reaction is;
0.5 * 0.0232
= 0.0116 moles
The molar mass of an oxygen atom is 16 g/mole. Then the amount of O in grams consumed is;
0.0116 * 16
=0.1853 g
The final weight of the Rubidium II Oxide is;
1.98 + 0.1853
= 2.1653 g
Answer this ......,..,.,.,.,.,.,.,..,.,.,.,.,.z.z.,.,.,.,..,.,.,.,.,.,.,.,.,..,
ioda
A) CuBr2
b) Al(NO3)3
c) Ca3(PO4)2
d) Fe2S3
e) HgCl2
f) Mg(C2H3O2)2