1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blagie [28]
3 years ago
14

A 20.0 mL 0.100 M solution of lactic acid is titrated with 0.100 M NaOH.

Chemistry
1 answer:
yan [13]3 years ago
7 0

Answer:

(a) See explanation below

(b) 0.002 mol

(c) (i) pH = 2.4

(ii) pH = 3.4

(iii) pH = 3.9

(iv) pH = 8.3

(v) pH = 12.0

Explanation:

(a) A buffer solution exits after addition of 5 mL of NaOH  since after reaction we will have  both the conjugate base lactate anion and unreacted weak  lactic acid present in solution.

Lets call lactic acid HA, and A⁻ the lactate conjugate base. The reaction is:

HA + NaOH ⇒ A⁻ + H₂O

Some unreacted HA will remain in solution, and since HA is a weak acid , we will have the followin equilibrium:

HA  + H₂O ⇆ H₃O⁺ + A⁻

Since we are going to have unreacted acid, and some conjugate base, the buffer has the capacity of maintaining the pH in a narrow range if we add acid or base within certain limits.

An added acid will be consumed by the conjugate base A⁻ , thus keeping the pH more or less equal:

A⁻ + H⁺ ⇄ HA

On the contrary, if we add extra base it will be consumed by the unreacted lactic acid, again maintaining the pH more or less constant.

H₃O⁺ + B ⇆ BH⁺

b) Again letting HA stand for lactic acid:

mol HA =  (20.0 mL x  1 L/1000 mL) x 0.100 mol/L = 0.002 mol

c)

i) After 0.00 mL of NaOH have been added

In this case we just have to determine the pH of a weak acid, and we know for a monopric acid:

pH = - log [H₃O⁺] where  [H₃O⁺] = √( Ka [HA])

Ka for lactic acid = 1.4 x 10⁻⁴  ( from reference tables)

[H₃O⁺] = √( Ka [HA]) = √(1.4 x 10⁻⁴ x 0.100) = 3.7 x 10⁻³

pH = - log(3.7 x 10⁻³) = 2.4

ii) After 5.00 mL of NaOH have been added ( 5x 10⁻³ L x 0.1 = 0.005 mol NaOH)

Now we have a buffer solution and must use the Henderson-Hasselbach equation.

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.0005                0

after rxn    0.002-0.0005                  0                  0.0005

                        0.0015

Using Henderson-Hasselbach equation :

pH = pKa + log [A⁻]/[HA]

pKa HA = -log (1.4 x 10⁻⁴) = 3.85

pH = 3.85 + log(0.0005/0.0015)

pH = 3.4

iii) After 10.0 mL of NaOH have been ( 0.010 L x 0.1 mol/L = 0.001 mol)

                             HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.001               0

after rxn        0.002-0.001                  0                  0.001

                        0.001

pH = 3.85 + log(0.001/0.001)  = 3.85

iv) After 20.0 mL of NaOH have been added ( 0.002 mol )

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.002                 0

after rxn                 0                         0                   0.002

We are at the neutralization point and  we do not have a buffer anymore, instead we just have  a weak base A⁻ to which we can determine its pOH as follows:

pOH = √Kb x [A⁻]

We need to determine the concentration of the weak base which is the mol per volume in liters.

At this stage of the titration we added 20 mL of lactic acid and 20 mL of NaOH, hence the volume of solution is 40 mL (0.04 L).

The molarity of A⁻ is then

[A⁻] = 0.002 mol / 0.04 L = 0.05 M

Kb is equal to

Ka x Kb = Kw ⇒ Kb = 10⁻¹⁴/ 1.4 x 10⁻⁴ = 7.1 x 10⁻¹¹

pOH is then:

[OH⁻] = √Kb x [A⁻]  = √( 7.1 x 10⁻¹¹ x 0.05) = 1.88 x 10⁻⁶

pOH = - log (  1.88 x 10⁻⁶ ) = 5.7

pH = 14 - pOH = 14 - 5.7 = 8.3

v) After 25.0 mL of NaOH have been added (

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn           0.002                  0.0025              0

after rxn                0                         0.0005              0.0005

Now here what we have is  the strong base sodium hydroxide and A⁻ but the strong base NaOH will predominate and drive the pH over the weak base A⁻.

So we treat this part as the determination of the pH of a strong base.

V= (20 mL + 25 mL) x 1 L /1000 mL = 0.045 L

[OH⁻] = 0.0005 mol / 0.045 L = 0.011 M

pOH = - log (0.011) = 2

pH = 14 - 1.95 = 12

You might be interested in
Which one of the following compounds is not covalent?
denpristay [2]
KCI is not a covalent compound, it is an ionic compound. 
A covalent compound is one in which each of the atoms involved contribute a specific number of electrons for sharing in order to from stable compound while an ionic compound is a compound formed when one atom donates electron to the other atom in the compound, in order to attain stability.  The compounds given in options A, B and D shared electrons while in KCl, potassium donates an electron to chlorine.
5 0
3 years ago
Read 2 more answers
A blank is a condition that strays from normal homeostasis.
AURORKA [14]

homeostatic imbalance is the answer, because it's when the internal environment cannot remain in equilibrium.

8 0
4 years ago
Please help me I will give you the brain thing and extra points. 2
oee [108]
I think it’s A but, don’t come at me if I’m wrong. Btw I read over it multiple times so this isn’t a random guess. Good luck tell me if you got it right
7 0
3 years ago
Read 2 more answers
What must always be the same on both sides of a chemical equation?
Margaret [11]

The number of Atoms must be the same on both sides

5 0
3 years ago
The periodic table is organized so chemists can easily see ____________.
zzz [600]

Answer: It’s C

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Outline how fresh water could be extracted from salt water if fresh water was no longer available.
    8·1 answer
  • Name two events involving electrons that can result in the formation of chemical bonds between atoms.
    7·1 answer
  • What is the Scientific<br> Method?
    8·1 answer
  • 30 POINTS!!!! WERE HELP ASAP! Mutualism, commensalism, and parasitism are all examples of what type of relationship between orga
    6·2 answers
  • PLEASE HELP 8TH GRADE SCIENCE. which of the following is the correct Lee abbreviated SI unit describing the mass of an object
    15·2 answers
  • What is the correct reaction for the dissociation (ionization) for a weak acid?
    13·1 answer
  • How many molecules are present in 3.09 mol of silicon dioxide, SiO2
    9·1 answer
  • How the heck do i do this
    5·1 answer
  • A 500.0-mL buffer solution is 0.100 M in HNO2 and 0.150 M in KNO2. Determine if each addition would exceed the capacity of the b
    10·1 answer
  • What is the difference between nuclear fusion and nuclear fission?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!