1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blagie [28]
3 years ago
14

A 20.0 mL 0.100 M solution of lactic acid is titrated with 0.100 M NaOH.

Chemistry
1 answer:
yan [13]3 years ago
7 0

Answer:

(a) See explanation below

(b) 0.002 mol

(c) (i) pH = 2.4

(ii) pH = 3.4

(iii) pH = 3.9

(iv) pH = 8.3

(v) pH = 12.0

Explanation:

(a) A buffer solution exits after addition of 5 mL of NaOH  since after reaction we will have  both the conjugate base lactate anion and unreacted weak  lactic acid present in solution.

Lets call lactic acid HA, and A⁻ the lactate conjugate base. The reaction is:

HA + NaOH ⇒ A⁻ + H₂O

Some unreacted HA will remain in solution, and since HA is a weak acid , we will have the followin equilibrium:

HA  + H₂O ⇆ H₃O⁺ + A⁻

Since we are going to have unreacted acid, and some conjugate base, the buffer has the capacity of maintaining the pH in a narrow range if we add acid or base within certain limits.

An added acid will be consumed by the conjugate base A⁻ , thus keeping the pH more or less equal:

A⁻ + H⁺ ⇄ HA

On the contrary, if we add extra base it will be consumed by the unreacted lactic acid, again maintaining the pH more or less constant.

H₃O⁺ + B ⇆ BH⁺

b) Again letting HA stand for lactic acid:

mol HA =  (20.0 mL x  1 L/1000 mL) x 0.100 mol/L = 0.002 mol

c)

i) After 0.00 mL of NaOH have been added

In this case we just have to determine the pH of a weak acid, and we know for a monopric acid:

pH = - log [H₃O⁺] where  [H₃O⁺] = √( Ka [HA])

Ka for lactic acid = 1.4 x 10⁻⁴  ( from reference tables)

[H₃O⁺] = √( Ka [HA]) = √(1.4 x 10⁻⁴ x 0.100) = 3.7 x 10⁻³

pH = - log(3.7 x 10⁻³) = 2.4

ii) After 5.00 mL of NaOH have been added ( 5x 10⁻³ L x 0.1 = 0.005 mol NaOH)

Now we have a buffer solution and must use the Henderson-Hasselbach equation.

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.0005                0

after rxn    0.002-0.0005                  0                  0.0005

                        0.0015

Using Henderson-Hasselbach equation :

pH = pKa + log [A⁻]/[HA]

pKa HA = -log (1.4 x 10⁻⁴) = 3.85

pH = 3.85 + log(0.0005/0.0015)

pH = 3.4

iii) After 10.0 mL of NaOH have been ( 0.010 L x 0.1 mol/L = 0.001 mol)

                             HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.001               0

after rxn        0.002-0.001                  0                  0.001

                        0.001

pH = 3.85 + log(0.001/0.001)  = 3.85

iv) After 20.0 mL of NaOH have been added ( 0.002 mol )

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.002                 0

after rxn                 0                         0                   0.002

We are at the neutralization point and  we do not have a buffer anymore, instead we just have  a weak base A⁻ to which we can determine its pOH as follows:

pOH = √Kb x [A⁻]

We need to determine the concentration of the weak base which is the mol per volume in liters.

At this stage of the titration we added 20 mL of lactic acid and 20 mL of NaOH, hence the volume of solution is 40 mL (0.04 L).

The molarity of A⁻ is then

[A⁻] = 0.002 mol / 0.04 L = 0.05 M

Kb is equal to

Ka x Kb = Kw ⇒ Kb = 10⁻¹⁴/ 1.4 x 10⁻⁴ = 7.1 x 10⁻¹¹

pOH is then:

[OH⁻] = √Kb x [A⁻]  = √( 7.1 x 10⁻¹¹ x 0.05) = 1.88 x 10⁻⁶

pOH = - log (  1.88 x 10⁻⁶ ) = 5.7

pH = 14 - pOH = 14 - 5.7 = 8.3

v) After 25.0 mL of NaOH have been added (

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn           0.002                  0.0025              0

after rxn                0                         0.0005              0.0005

Now here what we have is  the strong base sodium hydroxide and A⁻ but the strong base NaOH will predominate and drive the pH over the weak base A⁻.

So we treat this part as the determination of the pH of a strong base.

V= (20 mL + 25 mL) x 1 L /1000 mL = 0.045 L

[OH⁻] = 0.0005 mol / 0.045 L = 0.011 M

pOH = - log (0.011) = 2

pH = 14 - 1.95 = 12

You might be interested in
Which statement best explains how electrons form a covalent bond in a molecule?
yKpoI14uk [10]

Answer:

covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms

the sharing of electrons allows each atom to attain the equivalent of a full outer shell, corresponding to a stable electronic configuration.

Explanation:

5 0
3 years ago
Read 2 more answers
Which of the following statements correctly explains why we experience seasons?
Basile [38]
Answer: I believe C is your best answer

Explanation: The earth revolves around the sun in an elongated circle. Every year is one full “circle.” Due to the earth also having a tilt on its axis, one “side” of the earth is usually closer to the sun. So In the first quarter of the earth’s travel around the sun, it’ll be winter, then the next quarter, spring, followed by Summer halfway through and then Autumn/fall. Such can be compared to how the seasons each usually fill in about a quarter of your calendar. That was explained a bit confusing but I hope I helped, good luck!
8 0
2 years ago
What is potential or potenz hydrogen?​
Mrrafil [7]

Answer:

potential or pontenz Hydrogen is the negative logarithm of molar hydrogen ion concentration.

Explanation:

potential Hydrogen or potenz Hydrogen stands for pH

potenz is in german

{ \tt{pH =  -  log [H {}^{ + } ]}}

7 0
3 years ago
__Mg +_ AgNO3 → _Mg(NO3)2 + __Ag
damaskus [11]

<em><u>Mg + 2AgNO3 = Mg(NO3)2 + 2Ag</u></em><em><u>.</u></em>

<em><u>....</u></em>

3 0
3 years ago
Which of the following shows the conservation of mass during cellular respiration?
nordsb [41]

Answer:

C6 H12 O6 + 6 O2 → 6 C O2 + 6 H2 O + energy

Explanation:

6 0
3 years ago
Other questions:
  • PLEASE PLEASE PLEASE​ ANSWER HAVE MERCY 35 POINTS
    11·1 answer
  • Which element is present in all organic
    11·1 answer
  • Which is a single ringed nitrogeo base?<br><br> A)adenine<br> B)guanine<br> C)thymine<br> D)ribose
    9·1 answer
  • An boron isotope consist of 5 protons 5 electrons and 6 neutrons its mass number is ?
    14·1 answer
  • Which of the following would have the lowest entropy?
    10·2 answers
  • Places with _______ altitude will have ______ climates. low; cold high; cold low; freezing high; warm
    14·2 answers
  • If the map shows the average high temperature in July for two cities in Texas. like Del Rio=36°c
    11·1 answer
  • Chem Stoichiometry, questions in Pic<br><br> Thanks )
    14·1 answer
  • A student pours ammonium nitrate into a container of room temperature water. The student stirs the mixture with a stirring rod a
    5·2 answers
  • If the conjugate base of a molecule has a pkb of 1.4, what would you expect the molecule to be?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!