Answer:
Explanation:
Generally, length of vector means the magnitude of the vector.
So, given a vector
R = a•i + b•j + c•k
Then, it magnitude can be caused using
|R|= √(a²+b²+c²)
So, applying this to each of the vector given.
(a) 2i + 4j + 3k
The length is
L = √(2²+4²+3²)
L = √(4+16+9)
L = √29
L = 5.385 unit
(b) 5i − 2j + k
Note that k means 1k
The length is
L = √(5²+(-2)²+1²)
Note that, -×- = +
L = √(25+4+1)
L = √30
L = 5.477 unit
(c) 2i − k
Note that, since there is no component j implies that j component is 0
L = 2i + 0j - 1k
The length is
L = √(2²+0²+(-1)²)
L = √(4+0+1)
L = √5
L = 2.236 unit
(d) 5i
Same as above no is j-component and k-component
L = 5i + 0j + 0k
The length is
L = √(5²+0²+0²)
L = √(25+0+0)
L = √25
L = 5 unit
(e) 3i − 2j − k
The length is
L = √(3²+(-2)²+(-1)²)
L = √(9+4+1)
L = √14
L = 3.742 unit
(f) i + j + k
The length is
L = √(1²+1²+1²)
L = √(1+1+1)
L = √3
L = 1.7321 unit
Allied powers
The United States, England, and Russia were members of the:
<span>
Axis Powers
Allied Powers
Triple Entente</span>
Answer:
See below ~
Explanation:
Part (a) :
We can say a body is in uniform acceleration if the acceleration of the object remains constant with respect to time throughout its motion.
Part (b) :
We can say a body is non-uniform acceleration if the acceleration of the body varies with respect to time throughout its motion.
Answer:
(a) f= 622.79 Hz
(b) f= 578.82 Hz
Explanation:
Given Data
Frequency= 600 Hz
Distance=1.0 m
n=120 rpm
Temperature =20 degree
Before solve this problem we need to find The sound generator moves on a circular with tangential velocity
So
Speed of sound is given by
c = √(γ·R·T/M)
............in an ideal gas
where γ heat capacity ratio
R universal gas constant
T absolute temperature
M molar mass
The speed of sound at 20°C is
c = √(1.40 ×8.314472J/molK ×293.15K / 0.0289645kg/mol)
c= 343.24m/s
The sound moves on a circular with tangential velocity
vt = ω·r.................where
ω=2·π·n
vt= 2·π·n·r
vt= 2·π · 120min⁻¹ · 1m
vt= 753.6 m/min
convert m/min to m/sec
vt= 12.56 m/s
Part A
For maximum frequency is observed
v = vt
f = f₀/(1 - vt/c )
f= 600Hz / (1 - (12.56m/s / 343.24m/s) )
f= 622.789 Hz
Part B
For minimum frequency is observed
v = -vt
f = f₀/(1 + vt/c )
f= 600Hz / (1 + (12.56m/s / 343.24m/s) )
f= 578.82 Hz
The total mechanical energy of the notebook is <u><em>19J</em></u>.
Mechanical energy is the sum of potential energy and kinetic energy. It has no kinetic energy, because it's not moving. So its potential energy is all the mechanical energy it has.