B.absorb neutrons to prevent chain reactions which become uncontrollable
<span>Slowing an
object down is not a means of accelerating it. It actually decelerates the
motion of an object. Speeding it up, changing its direction and applying
balanced forces accelerate an object. In order for an object to accelerate, a force
must be applied. It follows Newton’s second law of motion where it states that
a body at rest remains at rest unless a force is acted upon it. When you move
an object, you are exerting a force onto it. By exerting a force on the object,
you are actually displacing it from its initial position. You cannot apply
force to the object without altering its position. Keep in mind that when you
exert work, you are exerting energy too. </span>
Answer:
A) Diagonals of a parallelogram bisect each other
Answer:
one of the graph is postion-time graph while the other one is velocity-time graph
Answer:
the moment of inertia of the merry go round is 38.04 kg.m²
Explanation:
We are given;
Initial angular velocity; ω_1 = 37 rpm
Final angular velocity; ω_2 = 19 rpm
mass of child; m = 15.5 kg
distance from the centre; r = 1.55 m
Now, let the moment of inertia of the merry go round be I.
Using the principle of conservation of angular momentum, we have;
I_1 = I_2
Thus,
Iω_1 = I'ω_2
where I' is the moment of inertia of the merry go round and child which is given as I' = mr²
Thus,
I x 37 = ( I + mr²)19
37I = ( I + (15.5 x 1.55²))19
37I = 19I + 684.7125
37I - 19 I = 684.7125
18I = 684.7125
I = 684.7125/18
I = 38.04 kg.m²
Thus, the moment of inertia of the merry go round is 38.04 kg.m²