Answer:
a) The distance of spectator A to the player is 79.2 m
b) The distance of spectator B to the player is 43.9 m
c) The distance between the two spectators is 90.6 m
Explanation:
a) Knowing the time it takes the sound to reach both spectators, we can calculate their position relative to the player, using this equation:
x = v * t
where:
x = position of the spectators
v = speed of sound
t = time
Then, the position for spectator A relative to the player is:
x = 343 m/s * 0.231 s = 79.2 m
b)For spectator B:
x = 343 m/s * 0.128 s
x = 43.9 m
The distance of spectator A and B to the player is 79.2 m and 43.9 m respectively.
c) To calculate the distance between the spectators, please see the attached figure. Notice that the distance between the spectators is the hypotenuse of the triangle formed by the sightline of both. We already know the longitude of the two sides. Then, using Pythagoras theorem:
(Distance AB)² = A² + B²
(Distance AB)² = (79.2 m)² + (43.9 m)²
Distance AB = 90. 6 m
C. The sun is 400 times farther from Earth than the moon is.
Answer:
10.09 N
Explanation:
Analogously to Newton's second law, torque can be defined as:

Here, I is the moment of inertia and
is the angular acceleration. We have:

Torque is the vector product of the position vector of the point at which the force is applied by the force vector:

Since the effective lever arm is perpendicular to the force, the angle between them is
. The magnitud of this vector product is defined as:
.
Solving for F and replacing the known values:

Beats are generated by two interfering waves when they have slightly different frequencies.