Here's link to the answer:
bit.
ly/3a8Nt8n
My sample would be 4000 years old because on my graph, I had about 9 Virtualium left at trial 4 so I am guessing that it would be 4000 years old.
Answer: 18.65L
Explanation:
Given that,
Original volume of oxygen (V1) = 30.0L
Original temperature of oxygen (T1) = 200°C
[Convert temperature in Celsius to Kelvin by adding 273.
So, (200°C + 273 = 473K)]
New volume of oxygen V2 = ?
New temperature of oxygen T2 = 1°C
(1°C + 273 = 274K)
Since volume and temperature are given while pressure is held constant, apply the formula for Charle's law
V1/T1 = V2/T2
30.0L/473K = V2/294K
To get the value of V2, cross multiply
30.0L x 294K = 473K x V2
8820L•K = 473K•V2
Divide both sides by 473K
8820L•K / 473K = 473K•V2/473K
18.65L = V2
Thus, the new volume of oxygen is 18.65 liters.
One mole is always the same number: 6.02 * 10^ 23.
So, one mole of cars = 6.02 * 10 ^23 cars; one mole of pencils = 6.02 * 10^23 pencils; one mole of atoms = 6.02 * 10^23 atoms; one mole of molecules = 6.02 * 10^23 molecules.
So, all the options are correct: one mole of calcium ions has 6.02 * 10^23 representative particles, such as one mole of calcium nuclei and one of calcium atoms.
Answer:
pH = 2.0
Explanation:
To find the pH of a solution, take the -log[H+]. In this case, the -log(9.4 x 10^-3) equals 2.02687 which makes 2.0 when accounting for significant figures.