1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesnalui [34]
3 years ago
13

Determine the minimum force P to prevent the 30 kg uniform rod AB from sliding. The contact surface at B is smooth, whereas the

coefficient of static friction between the rod and the wall at A is μs= 0.3.
Engineering
1 answer:
geniusboy [140]3 years ago
4 0

Answer:

88.2N

Explanation:

Coefficient of static friction = force (P)/(mass × acceleration due to gravity)

Force (P) = coefficient of static friction × mass × acceleration due to gravity = 0.3 × 30 × 9.8 = 88.2N

You might be interested in
A heat recovery device involves transferring energy from the hot flue gases passing through an annular region to pressurized wat
Elina [12.6K]

Answer:

See explaination

Explanation:

Please kindly check attachment for the step by step solution of the given problem.

4 0
3 years ago
How many ase certifications are there for automotive technicians?
romanna [79]

Answer:

There are 50 ASE certification tests, covering almost every imaginable aspect of the automotive repair and service industry.

Explanation:

yww <33

5 0
2 years ago
The diffusion coefficients for species A in metal B are given at two temperatures:
Kruka [31]

Answer:

a) 149 kJ/mol, b) 6.11*10^-11 m^2/s ,c) 2.76*10^-16 m^2/s

Explanation:

Diffusion is governed by Arrhenius equation

D = D_0e^{\frac{-Q_d}{RT} }

I will be using R in the equation instead of k_b as the problem asks for molar activation energy

I will be using

R = 8.314\ J/mol*K

and

°C + 273 = K

here, adjust your precision as neccessary

Since we got 2 difusion coefficients at 2 temperatures alredy, we can simply turn these into 2 linear equations to solve for a) and b) simply by taking logarithm

So:

ln(6.69*10^{-17})=ln(D_0) -\frac{Q_d}{R*(1030+273)}

and

ln(6.56*10^{-16}) = ln(D_0) -\frac{Q_d}{R*(1290+273)}

You might notice that these equations have the form of  

d=y-ax

You can solve this equation system easily using calculator, and you will eventually get

D_0 =6.11*10^{-11}\ m^2/s\\ Q_d=1.49 *10^3\ J/mol

After you got those 2 parameters, the rest is easy, you can just plug them all   including the given temperature of 1180°C into the Arrhenius equation

6.11*10^{-11}e^{\frac{149\ 000}{8.143*(1180+273)}

And you should get D = 2.76*10^-16 m^/s as an answer for c)

5 0
3 years ago
A horizontal curve on a two-lane road is designed with a 2,300-ft radius, 12-ft lanes, and a 65-mph design speed. Determine the
Ierofanga [76]

Answer:

distance = 22.57 ft

superelevation rate = 2%

Explanation:

given data

radius = 2,300-ft

lanes width = 12-ft

no of lane = 2

design speed = 65-mph

solution

we get here sufficient sight distance SSD that is express as

SSD = 1.47 ut + \frac{u^2}{30(\frac{a}{g}\pm G)}     ..............1

here u is speed and t is reaction time i.e 2.5 second and a is here deceleration rate i.e 11.2 ft/s² and g is gravitational force i.e 32.2 ft/s² and G is gradient i.e 0 here

so put here value and we get

SSD = 1.47 × 65 ×2.5  + \frac{65^2}{30(\frac{11.2}{32.2}\pm 0)}

solve it we get

SSD = 644 ft  

so here minimum distance clear from the inside edge of the inside lane is

Ms = Rv ( 1  - cos (\frac{28.65 SSD}{Rv}) )        .....................2

here Rv is = R - one lane width

Rv = 2300 - 6 = 2294 ft

put value in equation 2 we get

Ms = 2294 ( 1  - cos (\frac{28.65 \times 664}{2294})  )  

solve it we get

Ms = 22.57 ft

and

superelevation rate for the curve will be here as

R  = \frac{u^2}{15(e+f)}  ..................3

here f is coefficient of friction that is 0.10

put here value and we get e

2300 = \frac{65^2}{15(e+0.10)}

solve it we get

e = 2%

3 0
3 years ago
If the head loss in a 30 m of length of a 75-mm-diameter pipe is 7.6 m for a given flow rate of water, what is the total drag fo
Stolb23 [73]

Answer:

526.5 KN

Explanation:

The total head loss in a pipe is a sum of pressure head, kinetic energy head and potential energy head.

But the pipe is assumed to be horizontal and the velocity through the pipe is constant, Hence the head loss is just pressure head.

h = (P₁/ρg) - (P₂/ρg) = (P₁ - P₂)/ρg

where ρ = density of the fluid and g = acceleration due to gravity

h = ΔP/ρg

ΔP = ρgh = 1000 × 9.8 × 7.6 = 74480 Pa

Drag force over the length of the pipe = Dynamic pressure drop over the length of the pipe × Area of the pipe that the fluid is in contact with

Dynamic pressure drop over the length of the pipe = ΔP = 74480 Pa

Area of the pipe that the fluid is in contact with = 2πrL = 2π × (0.075/2) × 30 = 7.069 m²

Drag Force = 74480 × 7.069 = 526468.1 N = 526.5 KN

3 0
3 years ago
Other questions:
  • The manufacturer of a 1.5 V D flashlight battery says that the battery will deliver 9 {\rm mA} for 37 continuous hours. During t
    10·1 answer
  • A disk brake has two pads which cover 45 degrees of the disk. The outside radius is 6.0 inch and the inside radius is 4.0 inch.
    5·1 answer
  • A steel bar 100 mm long and having a square cross section 20 mm x 20 mm is pulled in
    6·1 answer
  • Can a real refrigerator have higher COP than the COP of the Carnot refrigerator?
    7·2 answers
  • You have been assigned to design an open cylindrical storage tank 4 meters tall with a diameter of 8 meters to be made out of A-
    13·1 answer
  • 5. The pin support at A allows _______. Select the one that applies. (a) displacement in the x direction (b) rotation about its
    15·1 answer
  • Which of the following machine parts always require
    12·1 answer
  • A cylindrical 1040 steel rod having a minimum tensile strength of 865 MPa (125,000 psi), a ductility of at least 10%EL, and a fi
    7·1 answer
  • What energy does a curcuit board run on
    11·2 answers
  • A properly fitted wearable pfd should have which characteristics
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!