1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liq [111]
3 years ago
9

In the contemporary approach to control systems, benefits of continuous monitoring include which one of the following? Multiple

Choice dramatically increased time lags
early detection of changes in the competitive environment
reduced organizational flexibility
increased organization response time
Engineering
1 answer:
tangare [24]3 years ago
3 0

Answer:

increased organization response time

Explanation:

The main objective of continuous monitoring is to ensure that customers get access to all the necessary information they need. This also includes the speed and flexibility of the customers' access to vital information. The customers will be able to make valuable decision and the company will benefit immensely.

You might be interested in
What is the following passage saying about the relationship between sustainability and responsibility?
7nadin3 [17]

What the given passage is saying about the relationship between sustainability and responsibility is that;

C: We should only consider products or services to be green if their broad impact can be considered so.

<h3>Sustainability</h3>

From the passage, we see a write up questioning if the things we term to be green are truly green.

Now, from the passage, we see that a biofuel that is considered to be green is not really green if we consider that if it requires massive overproduction, it could wreck the water table.

Also, he says that if the production is local but also wasteful then it is not green.

Thus, we can see clearly that before we term a product or service as green, we should also consider their broad impact on the environment.

Read more about sustainability at; brainly.com/question/14154063

7 0
2 years ago
A ductile hot-rolled steel bar has a minimum yield strength in tension and compression of Syt = 60 kpsi and Syc = 75 kpsi. Using
kow [346]

Answer:

2.135

Explanation:

Lets make use of these variables

Ox 16.5 kpsi, and Oy --14,5 kpsi

To determine the factor of safety for the states of plane stress. We have to first understand the concept of Coulomb-Mohr theory.

Mohr–Coulomb theory is a mathematical model describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress.

Please refer to attachment for the step by step solution.

4 0
4 years ago
2.
den301095 [7]
Jae pain seems the most off
4 0
3 years ago
To find the reactance XLXLX_L of an inductor, imagine that a current I(t)=I0sin(ωt)I(t)=I0sin⁡(ωt) , is flowing through the indu
Sophie [7]

Answer:

V(t) = XLI₀sin(π/2 - ωt)

Explanation:

According to Maxwell's equation which is expressed as;

V(t) = dФ/dt ........(1)

Magnetic flux Ф can also be expressed as;

Ф = LI(t)

Where

L = inductance of the inductor

I = current in Ampere

We can therefore Express Maxwell equation as:

V(t) = dLI(t)/dt ....... (2)

Since the inductance is constant then voltage remains

V(t) = LdI(t)/dt

In an AC circuit, the current is time varying and it is given in the form of

I(t) = I₀sin(ωt)

Substitutes the current I(t) into equation (2)

Then the voltage across inductor will be expressed as

V(t) = Ld(I₀sin(ωt))/dt

V(t) = LI₀ωcos(ωt)

Where cos(ωt) = sin(π/2 - ωt)

Then

V(t) = ωLI₀sin(π/2 - ωt) .....(3)

Because the voltage and current are out of phase with the phase difference of π/2 or 90°

The inductive reactance XL = ωL

Substitute ωL for XL in equation (3)

Therefore, the voltage across inductor is can be expressed as;

V(t) = XLI₀sin(π/2 - ωt)

3 0
3 years ago
The steady-state data listed below are claimed for a power cycle operating between hot and cold reservoirs at 1200K and 400K, re
Anni [7]

Answer:

a) W_cycle = 200 KW , n_th = 33.33 %  , Irreversible

b) W_cycle = 600 KW , n_th = 100 %     , Impossible

c) W_cycle = 400 KW , n_th = 66.67 %  , Reversible

Explanation:

Given:

- The temperatures for hot and cold reservoirs are as follows:

  TL = 400 K

  TH = 1200 K

Find:

For each case W_cycle , n_th ( Thermal Efficiency ) :

(a) QH = 600 kW, QC = 400 kW

(b) QH = 600 kW, QC = 0 kW

(c) QH = 600 kW, QC = 200kW

- Determine whether the cycle operates reversibly, operates irreversibly, or is impossible.

Solution:

- The work done by the cycle is given by first law of thermodynamics:

                                 W_cycle = QH - QC

- For categorization of cycle is given by second law of thermodynamics which states that:

                                 n_th < n_max     ...... irreversible

                                 n_th = n_max     ...... reversible

                                 n_th > n_max     ...... impossible

- Where n_max is the maximum efficiency that could be achieved by a cycle with Hot and cold reservoirs as follows:

                                n_max = 1 - TL / TH = 1 - 400/1200 = 66.67 %

And,                         n_th = W_cycle / QH

a) QH = 600 kW, QC = 400 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 400 = 200 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 200 / 600 = 33.33 %

   - The type of process according to second Law of thermodynamics:

               n_th = 33.333 %                n_max = 66.67 %

                                       n_th < n_max  

      Hence,                Irreversible Process  

b) QH = 600 kW, QC = 0 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 0 = 600 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 600 / 600 = 100 %

   - The type of process according to second Law of thermodynamics:

                 n_th = 100 %                 n_max = 66.67 %

                                     n_th > n_max  

      Hence,               Impossible Process              

c) QH = 600 kW, QC = 200 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 200 = 400 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 400 / 600 = 66.67 %

   - The type of process according to second Law of thermodynamics:

               n_th = 66.67 %                 n_max = 66.67 %

                                     n_th = n_max  

      Hence,                Reversible Process

7 0
3 years ago
Other questions:
  • What is EL Niño?
    9·1 answer
  • The elementary liquid-phase series reaction
    11·1 answer
  • Design a stepped-impedance low-pass filter having a cutoff frequency of 3 GHz and a fifth-order 0.5 dB equal-ripple response. As
    9·1 answer
  • To increase fault-tolerance, the security administrator for Corp has installed an active/passive firewall cluster where the seco
    11·1 answer
  • One kilogram of air, initially at 5 bar, 350 K, and 3 kg of carbon dioxide (CO2), initially at 2 bar, 450 K, are confined to opp
    14·1 answer
  • Identify the measurement shown in figure 7 and state in centimeters ​
    5·1 answer
  • 500 flights land each day at San Jose’s airport. Assume that each flight has a 5% chance of being late, independently of whether
    5·1 answer
  • The beam is supported by a pin at A and a roller at B which has negligible weight and a radius of 15 mm. If the coefficient of s
    7·1 answer
  • Which of the following is used in the electrical field?
    7·1 answer
  • Explain crystallographic defects.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!