i believe it is soft drink production
Answer:
Did you make sure you did it and your notifications are on
Answer:
The smaller gear will rotate faster.
Explanation:
If a larger gear is driven by a smaller gear, the large gear will rotate slower than the smaller gear but will have a greater moment. For example, a low gear on a bike or car. If a smaller gear is driven by a larger gear, the smaller gear will rotate quicker than the larger gear but will have a smaller moment.
I hope this helps! :)
Answer:
The correct option is;
c. the exergy of the tank can be anything between zero to P₀·V
Explanation:
The given parameters are;
The volume of the tank = V
The pressure in the tank = 0 Pascal
The pressure of the surrounding = P₀
The temperature of the surrounding = T₀
Exergy is a measure of the amount of a given energy which a system posses that is extractable to provide useful work. It is possible work that brings about equilibrium. It is the potential the system has to bring about change
The exergy balance equation is given as follows;
![X_2 - X_1 = \int\limits^2_1 {} \, \delta Q \left (1 - \dfrac{T_0}{T} \right ) - [W - P_0 \cdot (V_2 - V_1)]- X_{destroyed}](https://tex.z-dn.net/?f=X_2%20-%20X_1%20%3D%20%5Cint%5Climits%5E2_1%20%7B%7D%20%5C%2C%20%5Cdelta%20Q%20%5Cleft%20%281%20-%20%5Cdfrac%7BT_0%7D%7BT%7D%20%5Cright%20%29%20-%20%5BW%20-%20P_0%20%5Ccdot%20%28V_2%20-%20V_1%29%5D-%20X_%7Bdestroyed%7D)
Where;
X₂ - X₁ is the difference between the two exergies
Therefore, the exergy of the system with regards to the environment is the work received from the environment which at is equal to done on the system by the surrounding which by equilibrium for an empty tank with 0 pressure is equal to the product of the pressure of the surrounding and the volume of the empty tank or P₀ × V less the work, exergy destroyed, while taking into consideration the change in heat of the system
Therefore, the exergy of the tank can be anything between zero to P₀·V.
Answer:
The length of tank is found to be 0.6 m or 600 mm
Explanation:
In order to determine the length, we need to find a volume for the tank.
For this purpose, we use ideal gas equation:
PV = nRT
n = no. of moles = m/M
Therefore,
PV = (m/M)(RT)
V = (mRT)/(MP)
where,
V = volume of air = volume of container
m = mass of air = 4.64 kg
R = General Gas Constant = 8.314 J/mol.k
T = temperature of air = 10°C + 273 = 283 K
M = molecular mass of air = 0.02897 kg/mol
P = Pressure of Air = 20 MPa = 20 x 10^6 N/m²
V = (4.64 kg)(8.314 J/mol.k)(283 k)/(0.02897 kg/mol)(20 x 10^6 N/m²)
V = 0.01884 m³
Now, the volume of cylindrical tank is given as:
V = 0.01884 m³ = π(Diameter/2)²(Length)
Length = (0.01884 m³)(4)/π(0.2 m)²
<u>Length = 0.6 m = 600 mm</u>