1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kap26 [50]
3 years ago
11

Engineers are problem blank who use critical thinking to create new solutions.

Engineering
2 answers:
Nana76 [90]3 years ago
7 0

Answer:

problem solvers

Explanation:

irakobra [83]3 years ago
7 0
Correct I think rare
You might be interested in
A 1000 kg turbine has a rotating unbalance of 0.1 kg.m. The turbine operates at a speed between 500 to 750 rpm. What is the maxi
raketka [301]

Answer:

maximum isolator stiffness k =1764 kN-m

Explanation:

mean speed of rotation =\frac{N_1 +N_2}{2}

Nm = \frac{500+750}{2} = 625 rpm

w =\frac{2\pi Nm}{60}

  =65.44 rad/sec

F_T = mw^2 e

F_T = mew^2

       = 0.1*(65.44)^2

F_T =428.36 N

Transmission ratio =\frac{300}{428.36} = 0.7

also

transmission ratio = \frac{1}{[\frac{w}{w_n}]^{2} -1}

0.7 =\frac{1}{[\frac{65.44}{w_n}]^2 -1}

SOLVING FOR Wn

Wn = 42 rad/sec

Wn = \sqrt {\frac{k}{m}

k = m*W^2_n

k = 1000*42^2 = 1764 kN-m

k =1764 kN-m

3 0
3 years ago
A cylinder fitted with a frictionless piston contains 2 kg of R-134a at 3.5 bar and 100 C. The cylinder is now cooled so that th
inna [77]

Answer:

The answer to the question is

The heat transferred in the process is -274.645 kJ

Explanation:

To solve the question, we list out the variables thus

R-134a = Tetrafluoroethane

Intitial Temperaturte t₁ = 100 °C

Initial pressure = 3.5 bar = 350 kPa

For closed system we have m₁ = m₂ = m

ΔU = m×(u₂ - u₁) = ₁Q₂ -₁W₂

For constant pressure process we have

Work done = W = \int\limits^a_b P \, dV  = P×ΔV = P × (V₂ - V₁) = P×m×(v₂ - v₁)

From the tables we have

State 1 we have h₁ = (490.48 +489.52)/2 = 490 kJ/kg

State 2 gives h₂ = 206.75 + 0.75 × 194.57= 352.6775 kJ/kg

Therefore Q₁₂ = m×(u₂ - u₁) + W₁₂ = m × (u₂ - u₁) + P×m×(v₂ - v₁)

= m×(h₂ - h₁) = 2.0 kg × (352.6775 kJ/kg - 490 kJ/kg) =-274.645 kJ

5 0
3 years ago
In the final stages of production, a pharmaceutical is sterilized by heating it from 25 to 75°C as it moves at 0.2 m/s through a
stepan [7]

Answer:

The required heat flux = 12682.268 W/m²

Explanation:

From the given information:

The initial = 25°C

The final = 75°C

The volume of the fluid = 0.2 m/s

The diameter of the steel tube = 12.7 mm = 0.0127 m

The fluid properties for density \rho = 1000 kg/m³

The mass flow rate of the fluid can be calculated as:

m = pAV

m = \rho \dfrac{\pi}{4}D^2V

m = 1000 \times \dfrac{\pi}{4} \times ( 0.0127)^2 \times 0.2

m = 0.0253 \ kg/s

To estimate the amount of the heat by using the expression:

q = mc_p(T_{final}-T_{initial})

q = 0.0253 × 4000(75-25)

q = 101.2 (50)

q = 5060 W

Finally, the required heat of the flux is determined by using the formula:

q" = \dfrac{q}{A_s}

q" = \dfrac{q}{\pi D L}

q" = \dfrac{5060}{\pi \times 0.0127 \times 10}

q" =  12682.268 W/m²

The required heat flux = 12682.268 W/m²

3 0
3 years ago
A body is moving with simple harmonic motion. It's velocity is recorded as being 3.5m/s when it is at 150mm from the mid-positio
natima [27]

Answer:

1) A=282.6 mm

2)a_{max}=60.35\ m/s^2

3)T=0.42 sec

4)f= 2.24 Hz

Explanation:

Given that

V=3.5 m/s at x=150 mm     ------------1

V=2.5 m/s at x=225 mm   ------------2

Where x measured  from mid position.

We know that velocity in simple harmonic given as

V=\omega \sqrt{A^2-x^2}

Where A is the amplitude and ω is the natural frequency of simple harmonic motion.

From equation 1 and 2

3.5=\omega \sqrt{A^2-0.15^2}    ------3

2.5=\omega \sqrt{A^2-0.225^2}   --------4

Now by dividing equation 3 by 4

\dfrac{3.5}{2.5}=\dfrac {\sqrt{A^2-0.15^2}}{\sqrt{A^2-0.225^2}}

1.96=\dfrac {{A^2-0.15^2}}{{A^2-0.225^2}}

So    A=0.2826 m

A=282.6 mm

Now by putting the values of A in the equation 3

3.5=\omega \sqrt{A^2-0.15^2}

3.5=\omega \sqrt{0.2826^2-0.15^2}

ω=14.609 rad/s

Frequency

ω= 2πf

14.609= 2 x π x f

f= 2.24 Hz

Maximum acceleration

a_{max}=\omega ^2A

a_{max}=14.61 ^2\times 0.2826\ m/s^2

a_{max}=60.35\ m/s^2

Time period T

T=\dfrac{2\pi}{\omega}

T=\dfrac{2\pi}{14.609}

T=0.42 sec

8 0
4 years ago
A pump is used to extract water from a reservoir and deliver it to another reservoir whose free surface elevation is 200 ft abov
babunello [35]

Answer:

a) the expected flow rate is 31.4 ft³/s

b) the required brake horsepower is 2808.4 bhp

c) the location of pump inlet to avoid cavitation is -8.4 ft

Explanation:

Given the data in the question;

free surface elevation = 200 ft

total length of pipe required = 1000 ft

diameter = 12 inch

Iron with relative roughness ( k/D ) = 0.0005

H_{pump = 665-0.051Q² [Qinft ]

a) the expected flow rate

given that;

k/D  = 0.0005

k/2R = 0.0005

R/k = 1000

now, we determine the friction factor;

1/√f = 2log₁₀( R/k ) + 1.74

we substitute

1/√f = 2log₁₀( 1000 ) + 1.74

1/√f = 6 + 1.74

1/√f = 7.74

√f = 1/7.74

√f = 0.1291989

f = (0.1291989)²

f = 0.01669

Now, Using Bernoulli theorem between two reservoirs;

(p/ρq)₁ + (v²/2g)₁ + z₁ + H_p = (p/ρq)₂ + (v²/2g)₂ + z₂ + h_L

so

0 + 0 + 0 + 665-0.051Q² = 0 + 0 + 200 + flQ²/2gdA²

665-0.051Q² = 200 + flQ²/2gdA²

665-0.051Q² = 200 +[  ( 0.01669 × 1000 × Q² ) / (2 × 32.2 × (π/4)² × 1⁵ )

665 - 0.051Q² = 200 + [ 16.69Q² / 39.725 ]

665 - 200 - 0.051Q² = 0.420138Q²

665 - 200 = 0.420138Q² + 0.051Q²

465 = 0.471138Q²

Q² = 465 / 0.471138

Q² = 986.97196

Q = √986.97196

Q = 31.4 ft³/s

Therefore, the expected flow rate is 31.4 ft³/s

b) the brake horsepower required to drive the pump (assume an efficiency of 78%).

we know that;

P = ρgH_pQ / η

where; H_p = 665 - 0.051(986.97196) = 614.7

we substitute;

P = ( 62.42 × 614.7 × 31.4 ) / ( 0.78 × 550 )

P = 1204804.6236 / 429

P = 2808.4 bhp

Therefore, the required brake horsepower is 2808.4 bhp

c) the location of pump inlet to avoid cavitation (assume the required NPSH=25 ft).

NPSH = (P_{atom / ρg) - h_s - ( P_v / ρg )

we substitute

25  = ( 2116 / 62.42 ) - h_s - ( 30 / 62.42 )

h_s = 8.4 ft

Therefore, the location of pump inlet to avoid cavitation is -8.4 ft

6 0
3 years ago
Other questions:
  • A manufacturer makes two types of drinking straws: one with a square cross-sectional shape, and the other type the typical round
    9·1 answer
  • Five bolts are used in the connection between the axial member and the support. The ultimate shear strength of the bolts is 320
    5·1 answer
  • The air in a room has a pressure of 1 atm, a dry-bulb temperature of 24C, and a wet-bulb temperature of 17C. Using the psychrome
    12·1 answer
  • 10. Which of these requires a wheel alignment after replacement?
    11·2 answers
  • Assume that a p+ - n diode is built with an n region width l smaller than a hole diffusion length (l
    14·1 answer
  • WHICH TASK BEST FITS THE ROLE OF A DESIGN ENGINEER ?
    7·1 answer
  • While recharging a refrigerant system, the charging stops before the required amount of refrigerant has been inserted. What shou
    8·1 answer
  • ______________ help protect the lower legs and feet from heat hazards like molten metal and welding sparks.
    5·1 answer
  • Describe the first case where the power of synthesis was used to solve design problems.
    15·1 answer
  • As cylinder pressure and heat increase due to an increased load condition, the fuel injection management system must ___________
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!