The false statement about onStep is: B. The default number of steps per second is 30.
<h3>What is an onStep?</h3>
An onStep can be defined as a computerized telescope goto controller that is designed and developed to <u>animate shapes</u> while using it on a variety of mounting systems such as forks.
<h3>The characteristics of an onStep.</h3>
In Engineering, some of the characteristics that are associated with an onStep include the following:
- The onStep function can be called without user input.
- It can be used to animate shapes without user input.
- It only runs a certain number of times.
In conclusion, the default number of steps per second for onStep isn't 30.
Read more on onStep here: brainly.com/question/25619349
Answer:

Explanation:
We are given:
m = 1.06Kg

T = 22kj
Therefore we need to find coefficient performance or the cycle


= 5
For the amount of heat absorbed:

= 5 × 22 = 110KJ
For the amount of heat rejected:

= 110 + 22 = 132KJ
[tex[ q_H = \frac{Q_L}{m} [/tex];
= 
= 124.5KJ
Using refrigerant table at hfg = 124.5KJ/Kg we have 69.5°c
Convert 69.5°c to K we have 342.5K
To find the minimum temperature:
;

= 285.4K
Convert to °C we have 12.4°C
From the refrigerant R -134a table at
= 12.4°c we have 442KPa
Answer: 24 pA
Explanation:
As pure silicon is a semiconductor, the resistivity value is strongly dependent of temperature, as the main responsible for conductivity, the number of charge carriers (both electrons and holes) does.
Based on these considerations, we found that at room temperature, pure silicon resistivity can be approximated as 2.1. 10⁵ Ω cm.
The resistance R of a given resistor, is expressed by the following formula:
R = ρ L / A
Replacing by the values for resistivity, L and A, we have
R = 2.1. 10⁵ Ω cm. (10⁴ μm/cm). 50 μm/ 0.5 μm2
R = 2.1. 10¹¹ Ω
Assuming that we can apply Ohm´s Law, the current that would pass through this resistor for an applied voltage of 5 V, is as follows:
I = V/R = 5 V / 2.1.10¹¹ Ω = 2.38. 10⁻¹¹ A= 24 pA
The total number of trips that the vehicle has to make based on the given sequence of operation is 120 trips.
<em>"Your</em><em> </em><em>question is not complete, it seems to be missing the following information;"</em>
The sequence of operation is A - E - D - C - B - A - F
The given parameters;
- <em>number of pieces that will flow from the first machine A to machine F, = 2,000 pieces</em>
- <em>initial unit load specified in the first machine, L₁ = 50</em>
- <em>final unit load, L₂ = 100 </em>
- <em>the capacity of the vehicle = 1 unit load</em>
<em />
The given sequence of operation of the vehicle;
A - E - D - C - B - A - F
<em>the vehicle makes </em><em>6 trips</em><em> for </em><em>100</em><em> unit </em><em>loads</em>
The total number of trips that the vehicle has to make, in order to transport the 2000 pieces of the load given, is calculated as follows.
100 unit loads ----------------- 6 trips
2000 unit loads --------------- ?

Thus, the total number of trips that the vehicle has to make based on the given sequence of operation is 120 trips.
Learn more here:brainly.com/question/21468592
Answer: True
Explanation: Injector orifice is the factor which describes the size of the opening of the injector .There are different pattern and size of the opening for the injector which affects the mixture of the chemical substance that is used for the production of the energy that is known as propellant.
The pattern and size of the orifice will define the variation in the amount of energy that could be produced.Thus the statement given is true.