A is 588N.
b) When she reaches her terminal speed, 10 seconds into the dive, she is no longer accelerating, so the net force on her is zero.
Think of it this way: If the net force were not zero she would continue to accelerate.
c) She is no longer accelerating.
Her acceleration is zero.
Momentum = 0.5 * 4 = 2
to conclude the man’s velocity after he throws the piece of equipment, divide
this number by the man’s mass.
v = 2/90
This is about 0.0222 m/s. To know if he can move 6 meters at velocity in
4minutes, use the following equation.
d = v * t, t = 4 * 60 = 240 s
d = 2/90 * 240 = 5⅓ meters.
This is ⅔ of a meter from the spaceship. To know the velocity that he must have
to move 6 meter, use the same equation.
6 = v * 240
v = 6/240
This is about 0.00416 m/s.
His final momentum = 90 * 6/240 = 2.25
To know the velocity of the package, divide this number by the mass of the
package.
v = 2.25/0.5 = 4.5 m/s
Answer:
Stretching
Explanation:
Stretching is a great way to improve your flexibility!
The tension in the supporting cable when the cab originally moves downward is 18422.4 N
What is tension?
Tension is described as the pulling force by the means of a three-dimensional object.
Tension might also be described as the action-reaction pair of forces acting at each end of said elements.
Here,
m =combined mass = 1600 kg
s = Displacement of the elevator = 42 m
g = Acceleration due to gravity = 9.81 m/s²
u = Initial velocity = 12 m/s
v = Final velocity = 0
According to the equation of motion:

0 - 12^2 = 2*a*42
a = - 144 / 84
a = - 1.714 m/s^2
Now let's write the equation of the forces acting on the elevator. Taking upward as positive direction:
T-mg = ma
T = m(g-a)
T = 1600 ( 9.8-(-1.74))
T=18422.4 N
Hence,
The tension in the supporting cable when the cab, originally moving downward is 18422.4 N
Learn more about tension here:
<u>brainly.com/question/13772148</u>
#SPJ4
Answer: The potential energy associated with a mass attached to a spring depends on how much the spring is stretched or compressed. ... The gravitational force on the mass is −mg (“−” because the force points down). The force is the negative of the slope on the potential energy versus position graph.
Explanation:
:)