I think the most appropriate answer is: the solvent being used in the experiment
<span>To correct for any light absorption not originating from the solute you will need to calibrate the tools with a solution that most similar to the sample.
Blank covete or standard solution can be used, but it was not ideal. By using the solvent as calibration, you can remove the reading from the solvent so your result only comes from the sample.
</span>
The answer is The loudness of sound is related to its amplitude, this is off edmentum exactly so I advise changing up the wording. You can say something about the pitch or you can word it like, The sound of the wave is related to how loud the sound can be. Hope this helped
Answer:
C6H12O6 → 2C2H5OH + 2CO2
Explanation:
Glucose is an organic molecule, specifically a sugar, with the formula C612O6 while ethanol is another organic molecule with formula; C2H5OH.
However, as rightly said in this question, ethanol can be got from glucose via a process called fermentation in the presence of a catalyst called YEAST. The balanced equation is as follows:
C6H12O6 → 2C2H5OH + 2CO2
I believe that the answer for this question would be option A. 8 HOURS. Based on the given scenario above about a certain radioactive isotope placed near a Geiger counter, the half-life <span>of the isotope 32 hours later would be 8 hours. Hope this is the answer that you are looking for. </span>
Answer:
The correct option is: B. 13g
Explanation:
Given: Molar mass of iron (II) sulfate: m = 260g/mol,
Molarity of iron (II) sulfate solution: M = 0.1 M,
Volume of iron (II) sulfate solution: V = 500 mL = 500 × 10⁻³ = 0.5 L (∵ 1L = 1000mL)
Mass of iron (II) sulfate taken: w = ? g
<em>Molarity</em>: 
Here, n- total number of moles of solute, w - given mass of solute, m- molar mass of solute, V- total volume of solution in L
∴ <em>Molarity of iron (II) sulfate solution:</em> 
⇒ 
⇒ 
⇒ <em>mass of iron (II) sulfate taken:</em> 
<u>Therefore, the mass of iron (II) sulfate taken for preparing the given solution is 13 g.</u>