Answer: Option (b) is the correct answer.
Explanation:
As on increasing the temperature, the molecules gain more kinetic energy due to which they tend to collide and move rapidly from one place to another.
Thus, we can conclude that when temperature is increased, the kinetic energy of the molecules increases.
This means that temperature is directly proportional to the average kinetic energy of a gas.
Answer:
From n=1 to n=2
Explanation:
Electrons in n=1 are strongly attracted to the nucleus and therefore will require great force to overcome the electrostatic force of attraction to displace them from the energy level to another.
The electrostatic force reduces as you progress to the outer energy levels.
An atom's mass is determined by its protons and neutrons.
An atom's charge is determined by its number of protons minus it number of electrons.
Atoms become cations, or positively charged when they lose an electron, and since electrons have a negative charge, they become anions, or negatively charged.
Water is a universal solvent.
Carbohydrates (carbs) are used by the body for energy.
Steroids and triglycerides are lipids.
Proteins that catalyze chemical reactions are called enzymes.
Answer:
plaster is important because of the many uses you can make out of plaster
Answer:
Limiting reactant: O2
grams NO2 produced = 230.276 g NO2
grams of NO unused = 26.67 gNO
Explanation:
2NO + O2 --> 2NO2
Step 1: Determine the molar ratio NO:O2
molar ratio NO:O2 = 5.895: 2.503 = 2.35
stoichiometric molar ratio NO:O2 = 2:1
So, O2 is the limiting reactant.
Step2: Determine the grams of NO2:
?g NO2 = moles O2 x (2moles NO2/1 mol O2) x (MM NO2/ 1 mol NO2) = 2.503 x 2 x 46 = 230.276 g NO2
Step 3: Determine the amount of excess reagent unreacted
moles excess NO reacted = moles O2 x (2 moles NO/1 mol O2) = 2.503 x 2 = 5.006 moles NO reacted
moles NO unreacted = total moles NO - moles NO reacted = 5.895-5.006 =0.889 moles NO unreacted
mass NO unreacted = moles NO unreacted x MM NO = 0.889 x 30 =26.67 g NO unreacted