J. J. Thomson, who discovered the electron in 1897, proposed the plum pudding model of the atom in 1904 before the discovery of the atomic nucleus in order to include the electron in the atomic model. In Thomson's model, the atom is composed of electrons (which Thomson still called “corpuscles,” though G. J.
Answer:
Explanation:
Your strategy here will be to
use the chemical formula of carbon dioxide to find the number of molecules of
CO
2
that would contain that many atoms of oxygen
use Avogadro's constant to convert the number of molecules to moles of carbon dioxide
use the molar mass of carbon dioxide to convert the moles to grams
So, you know that one molecule of carbon dioxide contains
one atom of carbon,
1
×
C
two atoms of oxygen,
2
×
O
This means that the given number of atoms of oxygen would correspond to
4.8
⋅
10
22
atoms O
⋅
1 molecule CO
2
2
atoms O
=
2.4
⋅
10
22
molecules CO
2
Now, one mole of any molecular substance contains exactly
6.022
⋅
10
22
molecules of that substance -- this is known as Avogadro's constant.
In your case, the sample of carbon dioxide molecules contains
2.4
⋅
10
22
molecules CO
2
⋅
1 mole CO
2
6.022
⋅
10
23
molecules CO
2
=
0.03985 moles CO
2
Finally, carbon dioxide has a molar mass of
44.01 g mol
−
1
, which means that your sample will have a mass of
0.03985
moles CO
2
⋅
44.01 g
1
mole CO
2
=
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
∣
∣
a
a
1.8 g
a
a
∣
∣
−−−−−−−−−
The answer is rounded to two sig figs, the number of sig figs you have for the number of atoms of oxygen present in the sample.
I believe the answer is compound B may have a lower molecular weight compared to compound A.
At the same temperature, lighter particles of a compound have a higher average speeds than do heavier particles of another compound. Thus, particles of compound B are lighter than those of compound A and thus they have a higher average speed, hence evaporating faster compared to compound A.
The main function is to help them see with all their eyes.
A. The products of the change are different from the starting
substances.
<u>Explanation:</u>
Whenever there is a physical change it may just affect the phase change but the properties remains the same. Whenever there is an occurrence of a chemical change, it was indicated by some of these things such as,
- The products are exactly different from the products.
- Chemical properties of these reactants are entirely different from that of the products.
- Chemical composition as well as the physical properties of the reactants and the products will change