Answer:
Jack Beacuse...
Explanation:
the soil has water in it so it will be more than one matterial
A solution (in this experiment solution of NaNO₃) freezes at a lower temperature than does the pure solvent (deionized water). The higher the
solute concentration (sodium nitrate), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
First measure freezing point of pure solvent (deionized water). Than make solutions of NaNO₃ with different molality and measure separately their freezing points. Use equation to calculate Kf.
Answer:
The answer to your question is 122.4 g of O₂
Explanation:
Data
mass of O₂ = ?
moles of H₂O = 7.65
Process
1.- Write the balanced chemical reaction
2H₂O ⇒ 2H₂ + O₂
2.- Convert the moles of H₂O to grams
molar mass of H₂O = 2 + 16 = 18 g
18 g of H₂O ---------------- 1 mol
x ----------------- 7.65 moles
x = (7.65 x 18) / 1
x = 137.7 g H₂O
3.- Calculate the grams of O₂
36 g of H₂O -------------------- 32 g of O₂
137.7 g of H₂O ------------------- x
x = (32 x 137.7) / 36
x = 122.4 g of O₂
<span>Based on the crystal field strength, Cl ligand would give the longest d-d transition when complexed with Ti(III). as this is the weak field ligand and would cause minimum splitting of d orbitals.</span>
Answer:
0.1988 J/g°C
Explanation:
-Qmetal = Qwater
Q = mc∆T
Where;
Q = amount of heat
m = mass of substance
c = specific heat of substance
∆T = change in temperature
Hence;
-{mc∆T} of metal = {mc∆T} of water
From the information provided in this question, For water; m= 22.0g, ∆T = (24°C-19°C), c = 4.18J/g°C.
For metal; m= 34.0g, ∆T = (24°C-92°C), c = ?
Note that, the final temperature of water and the metal = 24°C
-{34 × c × (24°C-92°C)} = 22 × 4.18 × (24°C-19°C)
-{34 × c × (-68°C)} = 459.8
-{34 × c × -68} = 459.8
-{-2312c} = 459.8
+2312c = 459.8
c = 459.8/2312
c = 0.1988
The specific heat capacity of the metal is 0.1988 J/g°C