Answer:
The electron geometry, molecular geometry and idealized bond angles for these molecules respectively are:
a. CF4: tetrahedral, tetrahedral and 109.5 degrees
b. NF3 tetrahedral, trigonal pyramidal and 102.5 degrees
c. OF2 tetrahedral, angular and 103 degrees
d. H2S tetrahedral, angular and 92.1 degrees
Explanation:
The electron geometry considers the bound atoms and unbound electron pairs to determine the geometry. The four molecules have four bound atoms and/or unbound electrons pairs, thus they have a tetrahedral geometry. On the other hand, the molecular geometry only considers the position of bound atoms to determine the geometry.
Between H3O and H2O, H2O has a smaller bond angle due to the two unbound electron pairs. The bond angle decrease as the number of unbound electron pairs increases in every molecule.
CO2 and CCl4 are both nonpolar because of the 3D geometry of the molecule. Each individual bond is polar but both molecules have symmetrical geometry so the dipole bonds are canceled.
CH3F is a polar molecule because the dipole between the C-H and C-F bonds are differents thus, besides the symmetrical geometry the dipole bonds are not canceled.
Answer:
to be precise in the calculations
Explanation: for example your cell phone has a gps inside it, the gps is responsible for providing direction data like a compass, if the equipment is not calibrated, the gps will not find the correct direction.
Answer:
We have NH 4 and that's called the ammonium ion it also stays together.
Explanation:
Answer:
filtration and chromatography
Explanation:
I hope this will help you :-)