Answer:
Bonds are broken and new bonds are formed during chemical reactions only.
Explanation:
- A physical change in a substance doesn't change what the substance is.
- In a chemical change where there is a chemical reaction, a new substance is formed and energy is either given off or absorbed.
- Physical changes can be reversed, chemical changes cannot be reversed with the substance changed back without extraordinary means, if at all. For example, a cup of water can be frozen when cooled and then can be returned to a liquid form when heated.
So, the right choice is:
Bonds are broken and new bonds are formed during chemical reactions only.
<span> Chemical properties depend on electron configuration. By either gaining or losing electrons, an atom changes its electron configuration and therefore its chemical properties also change. 9.</span>






Answer:
Explanation:
From the correct question above:
The reaction can be represented as:

From the above reaction; the ICE table can be represented as:

I (mol/L) 0.086 0.28 0 0
C -4x -3x +2x +6x
E 0.086 - 4x 0.28 - 3x +2x +6x
At equilibrium;
The water vapor = 


![\text{equilibrium constant} ({k_c}) = \dfrac{ [N_2]^2 [H_2O]^6 }{ [[NH_3]^4] [O_2]^3 }](https://tex.z-dn.net/?f=%5Ctext%7Bequilibrium%20constant%7D%20%20%28%7Bk_c%7D%29%20%3D%20%20%5Cdfrac%7B%20%5BN_2%5D%5E2%20%5BH_2O%5D%5E6%20%7D%7B%20%5B%5BNH_3%5D%5E4%5D%20%5BO_2%5D%5E3%20%7D)

Replacing the value of x, we have:


(80+125+45) / 10 = 250/10 =25
25 meters per minute= 0.41 meters/second
the direction and stopping time is irrelevant to the problem.
The molarity of aqueous lithium bromide, LiBr solution is 0.2 M
We'll begin by calculating the number of mole of Pb(NO₃)₂ in the solution.
- Volume = 10 mL = 10 / 1000 = 0.01 L
- Molarity of Pb(NO₃)₂ = 0.250 M
- Mole of Pb(NO₃)₂ =?
Mole = Molarity x Volume
Mole of Pb(NO₃)₂ = 0.25 × 0.01
Mole of Pb(NO₃)₂ = 0.0025 mole
Next, we shall determine the mole of LiBr required to react with 0.0025 mole of Pb(NO₃)₂
Pb(NO₃)₂ + 2LiBr —> PbBr₂ + 2LiNO₃
From the balanced equation above,
1 mole of Pb(NO₃)₂ reacted with 2 mole of LiBr.
Therefore,
0.0025 mole of Pb(NO₃)₂ will react with = 2 × 0.0025 = 0.005 mole of LiBr
Finally, we shall determine the molarity of the LiBr solution
- Mole = 0.005 mole
- Volume = 25 mL = 25 / 1000 = 0.025 L
- Molarity of LiBr =?
Molarity = mole / Volume
Molarity of LiBr = 0.005 / 0.025
Molarity of LiBr = 0.2 M
Learn more about molarity: brainly.com/question/10103895