I feel like the answer would be B. The chair pushes down on the floor becuase the question says when you sit in a chair, your body exerts a downward force on the chair so it would be pushing downward meaning that the chair would also go down making it push onto the floor.
Answer:
The velocity of the man from the frame of reference of a stationary observer is, V₂ = 5 m/s
Explanation:
Given,
Your velocity, V₁ = 2 m/
The velocity of the person, V₂ =?
The velocity of the person relative to you, V₂₁ = 3 m/s
According to the relative velocity of two
V₂₁ = V₂ -V₁
∴ V₂ = V₂₁ + V₁
On substitution
V₂ = 3 + 2
= 5 m/s
Hence, the velocity of the man from the frame of reference of a stationary observe is, V₂ = 5 m/s
Answer:
(a) v = 5.42m/s
(b) vo = 4.64m/s
(c) a = 2874.28m/s^2
(d) Δy = 5.11*10^-3m
Explanation:
(a) The velocity of the ball before it hits the floor is given by:
(1)
g: gravitational acceleration = 9.8m/s^2
h: height where the ball falls down = 1.50m

The speed of the ball is 5.42m/s
(b) To calculate the velocity of the ball, after it leaves the floor, you use the information of the maximum height reached by the ball after it leaves the floor.
You use the following formula:
(2)
vo: velocity of the ball where it starts its motion upward
You solve for vo and replace the values of the parameters:

The velocity of the ball is 4.64m/s
(c) The acceleration is given by:


The acceleration of the ball is 2874.28/s^2
(d) The compression of the ball is:

THe compression of the ball when it strikes the floor is 5.11*10^-3m
Answer:
velocity changes over time.
Unlike acceleration and velocity, speed does not need to specify the direction of motion. Speed is a scalar quality.