1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kenny6666 [7]
3 years ago
5

The drag force pushes opposite your motion as you ride a bicycle. If you double your speed, what happens to the drag force?

Physics
1 answer:
timurjin [86]3 years ago
7 0

Answer: The drag force goes up by a factor of 4

Explanation:

The <u>Drag Force</u> equation is:

F_{D}=\frac{1}{2}C_{D}\rho A_{D}V^{2} (1)

Where:

F_{D} is the Drag Force

C_{D} is the Drag coefficient, which depends on the material

\rho is the density of the fluid where the bicycle is moving (<u>air in this case) </u>

A_{D} is the transversal area of the body or object

V the bicycle's velocity

Now, if we assume C_{D}, \rho and A_{D} do not change, we can rewrite (1) as:

F_{D}=C.V^{2} (2)

Where C groups all these coefficients.

So, if we have a new velocity V_{n} , which is the double of the former velocity:

V_{n}=2V (3)

Equation (2) is written as:

F_{D}=C.V_{n}^{2}=C.(2V)^{2}

F_{D}=4CV^{2} (4)

Comparing (2) and (4) we can conclude<u> the Drag force is four times greater when the speed is doubled.</u>

You might be interested in
Please solve this question ​
lesantik [10]

Answer:

88200 Pa

it is because

height =9m

density=1000kg/m(cube)

gravity = 9.8m/s(square)

now,

P=d×g×h

= 1000×9.8×9

=88200pa

8 0
3 years ago
A wave With wavelength 20 m has a frequency of 12 Hz what is the waves speed
pentagon [3]

Answer:

240m/s

Explanation:

The equation to calculate is wavelength= velocity/ frequency so to find the velocity you would have to multiply frequency by wavelength.

7 0
3 years ago
Compare the wavelengths of an electron (mass = 9.11 × 10−31 kg) and a proton (mass = 1.67 × 10−27 kg), each having (a) a speed o
Ad libitum [116K]

Answer:

Part A:

The proton has a smaller wavelength than the electron.  

\lambda_{proton} = 6.05x10^{-14}m < \lambda_{electron} = 1.10x10^{-10}m

Part B:

The proton has a smaller wavelength than the electron.

\lambda_{proton} = 1.29x10^{-13}m < \lambda_{electron} = 5.525x10^{-12}m

Explanation:

The wavelength of each particle can be determined by means of the De Broglie equation.

\lambda = \frac{h}{p} (1)

Where h is the Planck's constant and p is the momentum.

\lambda = \frac{h}{mv} (2)

Part A

Case for the electron:

\lambda = \frac{6.624x10^{-34} J.s}{(9.11x10^{-31}Kg)(6.55x10^{6}m/s)}

But J = Kg.m^{2}/s^{2}

\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(9.11x10^{-31}Kg)(6.55x10^{6}m/s)}

\lambda = 1.10x10^{-10}m

Case for the proton:

\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(1.67x10^{-27}Kg)(6.55x10^{6}m/s)}

\lambda = 6.05x10^{-14}m

Hence, the proton has a smaller wavelength than the electron.  

<em>Part B </em>

For part b, the wavelength of the electron and proton for that energy will be determined.

First, it is necessary to find the velocity associated to that kinetic energy:

KE = \frac{1}{2}mv^{2}

2KE = mv^{2}

v^{2} = \frac{2KE}{m}

v = \sqrt{\frac{2KE}{m}}  (3)

Case for the electron:

v = \sqrt{\frac{2(7.89x10^{-15}J)}{9.11x10^{-31}Kg}}

but 1J = kg \cdot m^{2}/s^{2}

v = \sqrt{\frac{2(7.89x10^{-15}kg \cdot m^{2}/s^{2})}{9.11x10^{-31}Kg}}

v = 1.316x10^{8}m/s

Then, equation 2 can be used:

\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(9.11x10^{-31}Kg)(1.316x10^{8}m/s)}    

\lambda = 5.525x10^{-12}m

Case for the proton :

v = \sqrt{\frac{2(7.89x10^{-15}J)}{1.67x10^{-27}Kg}}

But 1J = kg \cdot m^{2}/s^{2}

v = \sqrt{\frac{2(7.89x10^{-15}kg \cdot m^{2}/s^{2})}{1.67x10^{-27}Kg}}

v = 3.07x10^{6}m/s

Then, equation 2 can be used:

\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(1.67x10^{-27}Kg)(3.07x10^{6}m/s)}

\lambda = 1.29x10^{-13}m    

Hence, the proton has a smaller wavelength than the electron.

7 0
3 years ago
If the force squeezing two surfaces together is decreased, the force of dry sliding friction between the two surfaces will most
Anastasy [175]

<em>If the force squeezing two surfaces together is decreased, the force of dry sliding friction between the two surfaces will most likely decrease. </em>

<u>therefore your answer is B)</u><u>d</u><u>e</u><u>crease </u>

Hope this helps you- have a good day bro cya)

7 0
3 years ago
Un objeto se mueve con una rapidez constante de 8 m/s. Esto significa que el objeto: a) Aumenta su rapidez en 8m/s cada segundo
Hatshy [7]

Explanation:

Constant speed means that the object is covering equal distance in equal interval of time. The motion is called uniform motion for such case. In this problem, it is given that an object is moving with a constant speed of 8 m/s. It means that it does not change its speed. It is moving with a single speed constantly.

We can say that it moves 8 meters every second or 800 cm every second.

4 0
4 years ago
Other questions:
  • You spy on an anchor on the bottom of a lake. What is the direction and amount of force the water exerts on it: a) zero
    14·1 answer
  • Camels can run faster than horses in desert.Why
    13·2 answers
  • A light bulb and a solenoid are connected in series to a battery. An irod rod is thrust rapidly into the solenoid and later rapi
    9·2 answers
  • How does genetic drift affect small populations differently than large populations?
    9·1 answer
  • A boat is traveling upstream in the positive direction of the x axis at 10 km/h with respect to the water of a river. The water
    8·1 answer
  • The law of conservation of energy states that
    14·1 answer
  • What does the angular momentum quantum number determine? Check all that apply.
    10·2 answers
  • Which physical property causes you to learn to one side when the bus you are traveling in takes a sharp turn?
    11·1 answer
  • Select the correct answer.
    15·1 answer
  • a steam engine works on its vicinity and 285 k heat is released with the help of 225 degree centigrade energy absorbed to the sy
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!