The time constant determines how long it takes for the capacitor to charge.
To find the answer, we have to know more about the time constant of the capacitor.
<h3>What is time constant?</h3>
- The time it takes for a capacitor to discharge 36.8% of its charge in a discharging circuit or charge up to 63.2% of its maximum capacity in a charging circuit, given that it has no initial charge, is the time constant of a resistor-capacitor series combination.
- The circuit's reaction to a step-up (or constant) voltage input is likewise determined by the time constant.
- As a result, the time constant determines the circuit's cutoff frequency.
Thus, we can conclude that, the time constant determines how long it takes for the capacitor to charge.
Learn more about the time constant here:
brainly.com/question/17050299
#SPJ4
Explanation:
In order to find out if the keys will reach John or not, we can use the formula of projectile motion to find the maximum height reached by the keys:
H = V²Sin²θ/2g
where,
V = Launch Speed = 18 m/s
θ = Launch Angle = 40°
g = 9.8 m/s²
Therefore,
H = (18 m/s)²[Sin 40°]²/(2)(9.8 m/s²)
H = 6.83 m
Hence, the maximum height that can be reached by the projectile or the keys is greater than the height of John's Balcony(5.33 m).
Therefore, the keys will make it back to John.
Electric potential energy of a dipole is given as


so change in the potential energy is given by


here initially it was parallel to electric field while finally it is perpendicular to the electric field
so we have


so above is the change in potential energy of dipole