Answer:
The specific gravity of the unkown liquid is 15.
Explanation:
Gauge pressure, at the bottom of the tank in this case, can be calculated from

where
and
are the height of the column of oil and the unkown liquid, respectively. Writing for
, we have

Relative to water, the unknow liquid specific weight is 15 times bigger, therefore this is its specific gravity as well.
Answer:
Subducting convergent boundary
Explanation:
Generally, volcanoes occurs in both divergent and convergent boundaries. But the convergent boundary it occurs is usually associated with subduction.
Divergent boundary, plates move away from each other creating a new crust in the process. The diverging plates creates the space for magma to be squeezed through cracks and fissures. The magma's erupt to form volcanoes. In the Atlantic ocean the spreading of the plates causes an upwelling of magma through the crest of the Atlantic ridges. New oceanic crust are formed through this process. Sometimes the magma eruption forms volcanoes that are higher than the sea level.
Convergent boundary , plates collides with each other . But in the case of volcanoes existence , the collision should be between a denser plate(oceanic plates) and a less dense plates(continental plates) so that subduction can take place. The subducted plates (oceanic plates) creates trenches and get expose to high temperature and pressure as it sinks toward the mantle. The upper mantle rocks melts and migrate to the earth surface forming volcanoes . Over 75% of the volcanoes occur along the pacific basin where convergent boundary is dominant. Pacific ring of fire has one of the most number of volcanoes.
As these are distances created by moving in a straight line, using a trigonometric analysis can solve the missing single straight-line displacement. Looking at the 48m and 12m movements as legs of a triangle, obtaining the hypotenuse using the pythagorean theorem will yield us the correct answer.
This is shown below:
c^2 = 48^2 + 12^2
c = sqrt(2304 + 144)
c = sqrt(2448)
c = 49.48 m
To obtain the angle at which Anthony walks 49.48, we obtain the arc tangent of (12/48). This is shown below:
arc tan (12/48) =14.04 degrees.
Therefore, Anthony could have walked 49.48 m towards the S 14.04 W direction.
<span>An automobile with a mass of 1450 kg is parked on a moving flatbed railcar; the flatbed is 1.5 m above the ground. The railcar has a mass of 38,500 kg and is moving to the right at a constant speed of 8.7 m/s on a frictionless rail...
</span>