Answer: Examples of conductors include metals, aqueous solutions of salts (i.e., ionic compounds dissolved in water), graphite, and the human body. Examples of insulators include plastics, Styrofoam, paper, rubber, glass and dry air.
The answer is C. F=ma basically says that force is a function of mass multiplied by acceleration. The first two answers don’t make sense because there’s no necessary relationship between mass and acceleration. And for the last two, the higher the mass, the higher the force needed, therefore C is the correct answer.
To solve for distance use the formula for distance d = st, or distance equals speed times time.
distance = speed x timeSpeed
so the answer is 240 miles per hour.
The answer is c. +2.0 µC
To calculate this, we will use Coulomb's Law:
F = k*Q1*Q2/r²
where F is force, k is constant, Q is a charge, r is a distance between charges.
k = 9.0 × 10⁹ N*m/C²
It is given:
F = 7.2 N
d = 0.1 m = 10⁻¹ m
Q1 = -4.0 µC = 4 * 1.0 × 10⁻⁶ = 4.0 × 10⁻⁶
Q2 = ?
Thus, let's replace this in the formula for the force:
7.2 = 9.0 × 10⁹ * 4.0 × 10⁻⁶ * Q2/(10⁻¹)²
7.2 = 9 * 4 * 10⁹⁻⁶ * Q2/10⁻¹°²
7.2 = 36 × 10³ * Q2 / 10⁻²
Multiply both sides of the equation by 10⁻²:
7.2 × 10⁻² = 36 × 10³ * Q2
⇒ Q2 = 7.2 × 10⁻² / 36 × 10³ = 7.2/36 × 10⁻²⁻³ = 0.2 × 10⁻⁵ = 2 × 10⁻⁶
Since µC = 1.0 × 10^-6:
Q2 = 2 * 1.0 × 10^-6 = 2 µC