1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Daniel [21]
3 years ago
7

A ski jumper has a mass of 59.6 kg. She is moving with a speed of 23.4 m/s at a height of 44.6 meters above the ground. Determin

e the total mechanical energy of the ski jumper. Assume negligible air resistance and friction. (3 pts)
Physics
1 answer:
Daniel [21]3 years ago
7 0

Hello!

Use the formula:

M = k * p

Data:

M = Mechanic energy

k = Kinetic energy

p = Potencial energy

Descomposing:

M = (0,5*mv²) + (mgh)

Replacing:

M = (0,5 * 59,6 kg * (23,4 m/s)²) + (59,6 kg * 9,81 m/s² * 44,6 m)

M = 16317,28 J + 26076,54 J

M = 42393,82 J

The mechanic energy is <u>42393,82 Joules.</u>

You might be interested in
Two coils close to each other have a mutual inductance of 32 mH. If the current in one coil decays according to I=I0e−αt, where
fiasKO [112]

The emf induced in the second coil is given by:

V = -M(di/dt)

V = emf, M = mutual indutance, di/dt = change of current in the first coil over time

The current in the first coil is given by:

i = i₀e^{-at}

i₀ = 5.0A, a = 2.0×10³s⁻¹

i = 5.0e^(-2.0×10³t)

Calculate di/dt by differentiating i with respect to t.

di/dt = -1.0×10⁴e^(-2.0×10³t)

Calculate a general formula for V. Givens:

M = 32×10⁻³H, di/dt = -1.0×10⁴e^(-2.0×10³t)

Plug in and solve for V:

V = -32×10⁻³(-1.0×10⁴e^(-2.0×10³t))

V = 320e^(-2.0×10³t)

We want to find the induced emf right after the current starts to decay. Plug in t = 0s:

V = 320e^(-2.0×10³(0))

V = 320e^0

V = 320 volts

We want to find the induced emf at t = 1.0×10⁻³s:

V = 320e^(-2.0×10³(1.0×10⁻³))

V = 43 volts

3 0
3 years ago
A cyclist traveling at constant speed of 12m/s when he passes a stationary bus.The bus starts moving just as the cyclist passes
Bogdan [553]

Answer:

A.) 8 seconds

B.) 16 seconds

C.) 48 m

Explanation:

Given that a cyclist traveling at constant speed of 12 m/s

and the bus accelerates uniformly at 1.5ms²

A.) The bus has the following parameters

Acceleration a = 1.5 m/s^2

Initial velocity U = 0. Since the bus is starting from rest.

Final velocity V = 12 m/s

Use equation one of linear motion.

V = U + at

Substitute V, U and a into the formula

12 = 0 + 1.5t

1.5t = 12

t = 12/1.5

t = 8 seconds

Therefore, the bus reach the same speed as the cyclist at 8 seconds.

B.) For the cyclist moving at constant speed, acceleration a = 0. Using second equation of motion

h = Ut + 1/2at^2

Since a = 0, the equation is reduced to:

h = Ut.

Also, for the bus,

h = Ut + 1/2at^2

Equate the two equations since the h is the same

Ut = Ut + 1/2at^2

Substitute all the parameters into the formula

12t = 0 + 1/2 × 1.5t^2

12t = 0.75t^2

0.75t = 12

t = 12/0.75

t = 16 seconds

Therefore, the bus takes 16 seconds to catch the cyclist

C.) Use third equation of linear motion.

V^2 = U^2 + 2as

Where s = distance

Substitute V, U and a into the formula

12^2 = 0 + 2 × 1.5 S

144 = 3S

S = 144/3

S = 48 m

8 0
3 years ago
A car starts from rest and accelerates uniformly for a five seconds along a straight road. If speed obtained by the car is 72 km
Step2247 [10]

Answer:

50 meters

Explanation:

Let's start by converting to m/s. There are 3600 seconds in an hour and 1000 meters in a kilometer, meaning that 72km/h is 20m/s.

v_f=v_o+at

Since the car starts at rest, you can write the following equation:

20=0+a(5) \\\\a=20\div 5=4 m/s^2

Now that you have the acceleration, you can do this:

d=v_o+\dfrac{1}{2}at^2

Once again, there is no initial velocity:

d=\dfrac{1}{2}(4)(5)^2=2 \cdot 25=50m

Hope this helps!

8 0
3 years ago
What are the output waveforms of the following waves, after passing through a transformer?
Ber [7]
The output waveforms after passing through the transformer actually depend on the type of transformer used. It could either be a step-up transformer (steps voltage up), or a step-down transformer (steps voltage down). Both transformers have an output voltage in a form of a sine wave.
8 0
3 years ago
Driving your Ferrari through the Italian countryside at a speedy 88 m/s, you approach an opera diva singing a high C (1,046 Hz).
MrRissso [65]

Answer:

You will hear the note E₆

Explanation:

We know that:

Your speed = 88m/s

Original frequency = 1,046 Hz

Sound speed = 340 m/s

The Doppler effect says that:

f' = \frac{v \pm v0 }{v \mp vs}*f

Where:

f = original frequency

f' = new frequency

v = velocity of the sound wave

v0 = your velocity

vs = velocity of the source, in this case, the source is the diva, we assume that she does not move, so vs = 0.

Replacing the values that we know in the equation we have:

f' = \frac{340 m/s + 88m/s}{340 m/s} *1,046 Hz = 1,316.73 Hz

This frequency is close to the note E₆ (1,318.5 Hz)

7 0
2 years ago
Other questions:
  • Two boxes sit side by side on a smooth horizontal surface. The lighter box 5.2 kg, the heavier box has a mass of 7.4kg (a) find
    9·1 answer
  • The heating of groundwater forms
    15·2 answers
  • The effect produced when two or more sound waves pass through the same point simultaneously is called?
    12·1 answer
  • A 91-kg astronaut and a 1300-kg satellite are at rest relative to the space shuttle. The astronaut pushes on the satellite, givi
    8·1 answer
  • Explain briefly work energy and power
    11·1 answer
  • Altitude is the angle measured above ____.<br><br> North Pole<br> horizon<br> equator<br> zenith
    15·2 answers
  • A vessel, divided into two parts by a partition, contains 4 mol of nitrogen gas at 75°C and 30 bar on one side and 2.5 mol of ar
    8·1 answer
  • Johanna is studying what happens to the energy as a ball rolls down a ramp. What is she studying? Check all that apply.
    8·1 answer
  • Express in words AND mathematically the relationship between…<br> Period and frequency
    14·1 answer
  • What does it mean to say that some elements are reactive and form ions easily whereas others do not?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!