This question involves the concepts of Wein's displacement law and characteristic wavelength.
The blackbody temperature will be "3.22 x 10⁵ k".
<h3>WEIN'S DISPLACEMENT LAW</h3>
According to Wein's displacement law,

where,
= characteristic wavelength = 9 μm = 9 x 10⁻⁹ m- T = temperature = ?
- c = Wein's displacment constant = 2.897 x 10⁻³ m.k
Therefore,

T = 3.22 x 10⁵ k
Learn more about characteristic wavelength here:
brainly.com/question/14650107
<h3><u>Given </u><u>:</u><u>-</u></h3>
- The mass of the body is doubled
- The height of the body is constant
<h3><u>Solution </u><u>:</u><u>-</u><u> </u></h3>
We know that ,
Potential energy = mgh
<u>Therefore</u><u>, </u>
We can say that,
PE is directly proportional to Mass of the body
<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>
PE of the body = 2m * g * h. ...eq( I)
From (I) , we can conclude that, If mass of the body get doubled then its PE will also be doubled .
Answer:
Kinetic energy is maximum when the player hits the ball.
Explanation:
Kinetic energy
, where m is the mass and v is the velocity.
So kinetic energy is proportional to square of velocity.
Velocity is maximum when the player hits the ball.
So kinetic energy is maximum when the player hits the ball.
Answer:
1. at the top of the coaster.
2. at the bottom of the coaster.
3. when the car is moving
4. when the car is moving
Explanation:
there is the most amount if potential energy at the top, and the keast at the bottom.
Answer:
Explanation:
The highest surface part of a wave is called the crest, and the lowest part is the trough. The vertical distance between the crest and the trough is the wave height. The horizontal distance between two adjacent crests or troughs is known as the wavelength...