Answer:
d = 69 .57 meter
Explanation:
First case
Speed of car ( v ) = 20.5 mi/h = 9.164 M/S
distance ( d ) = 11.6 meter ( m = mass of the car )
Work done = 0.5 m v² = 0.5 * 9.164² * m J = 41.99 m J
Force = ( workdone /distance ) = ( 41.99 m / 11.6 ) = 3.619 m N
Second case
v = 50.2 mi/h = 22.44135 m/s
d = ?
Work done = 0.5 * 22.44² * m J = 251.7768 * m J
Since the braking force remains the same .
3.619 m = ( 251.7768 m / d )
d = 69 .57 meter
Answer:
X-Positions: Y-Positions
x(0) = 0 y(0) = 0
x(2) = 120 m y(2) = 19.6 m
x(4) = 240 m y(4) = 78.4 m
x(6) = 360 m y(6) = 176.4 m
x(8) = 480 m y(8) = 313 m
x(10) = 600m y (10) = 490 m
Explanation:
X-Positions
- First, we choose to take the horizontal direction as our x-axis, and the positive x-axis as positive.
- After being thrown, in the horizontal direction, no external influence acts on the stone, so it will continue in the same direction at the same initial speed of 60. 0 m/s
- So, in order to know the horizontal position at any time t, we can apply the definition of average velocity, rearranging terms, as follows:
![x = v_{ox} * t = 60.0 m/s * t(s)](https://tex.z-dn.net/?f=x%20%3D%20v_%7Box%7D%20%2A%20t%20%3D%2060.0%20m%2Fs%20%2A%20t%28s%29)
- It can be seen that after 2 s, the displacement will be 120 m, and each 2 seconds, as the speed is constant, the displacement will increase in the same 120 m each time.
Y-Positions
- We choose to take the vertical direction as our y-axis, taking the downward direction as our positive axis.
- As both axes are perpendicular each other, both movements are independent each other also, so, in the vertical direction, the stone starts from rest.
- At any moment, it is subject to the acceleration of gravity, g.
- As the acceleration is constant, we can find the vertical displacement (taking the height of the cliff as the initial reference level), using the following kinematic equation:
![y = \frac{1}{2} * g* t^{2} = \frac{1}{2} * 9.8 m/s2 * t(s)^{2}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20g%2A%20t%5E%7B2%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2A%209.8%20m%2Fs2%20%2A%20t%28s%29%5E%7B2%7D)
- Replacing by the values of t, we get the following vertical positions, from the height of the cliff as y = 0:
- y(2) = 2* 9.8 m/s2 = 19.6 m
- y(4) = 8* 9.8 m/s2 = 78.4 m
- y(6) = 18*9.8 m/s2 = 176.4 m
- y(8) = 32*9.8 m/s2 = 313.6 m
- y(10)= 50 * 9.8 m/s2 = 490.0 m
I believe it goes as the following::
1) Waves transfer energy without moving particles
2) The two types of waves are longitudinal and transverse waves OR The two types of waves are mechanical and electromagnetic waves. Both are applicable and should be correct!
Answer:
Explanation:
a) 1.00 - 0.12 = 0.88
m = 1200(0.88)^t
b) t = ln(m/1200) / ln(0.88)
c) m = 1200(0.88)^10 = 334.20 g
d) t = ln(10/1200) / ln(0.88) = 37.451... = 37 s
e) t = ln(1/1200) / ln(0.88) = 55.463... = 55 s