Responder:
<h2>64 Julios
</h2>
Explicación:
La energía cinética se expresa mediante la fórmula KE = 1 / 2mv² donde;
m es la masa del cuerpo
v es la velocidad del objeto
Dado que el cuerpo se mueve horizontalmente con v = 4 m / sy después de un período de tiempo se mueve con v = 20 m / s, entonces la variación en la velocidad será de 20 m / s - 4 m / s = 16 m / s.
Parámetros dados
masa del objeto m = 0,5 kg
Variación de velocidad = 16 m / s
Variación de la energía cinética = 1/2 * 0,5 * 16²
Variación de la energía cinética = 1/2 * 0,5 * 256
Variación de la energía cinética = 0,5 * 128
<em>Variación de la energía cinética = 64 Julios</em>
Answer:
27J
Explanation:
From conservation of Thermal energy, the total internal energy is the total sum of energy supplied or taken from the system plus work done for or on the system.
Now the change in internal energy would be the sum of the received energy substended in the gas plus the work done by the system which is workdone that it will sustend in pushing the lid. This is expressed mathematically as;
U = Q + (F×d);
U- change in internal energy
Q is the energy received by the system and is positive when energy is received by the system.
Fxd is the workdone and is positive since the gas pushes up the lid- the system does work.
U=12+(3×5)= 27J
Force = mass × acceleration
To find acceleration, we can divide the speed by the time it took:
acceleration = 2.40×10^7 / 1.8×10^-9
acceleration = 1.33×10^16
the mass is equal to the mass of an electron
force = (9.11×10^-31)(1.33×10^16)
force = 1.21×10^-14 N
Answer: 
Explanation:
The acceleration of an object can be calculated by using Newton's second law:

where
F is the net force applied on the object
m is the mass of the object
a is its acceleration
In this problem, we have F=125 N and m=25.0 kg, so we can rearrange the equation to calculate the acceleration:

Answer:
n = 5 approx
Explanation:
If v be the velocity before the contact with the ground and v₁ be the velocity of bouncing back
= e ( coefficient of restitution ) = 
and

h₁ is height up-to which the ball bounces back after first bounce.
From the two equations we can write that


So on

= .00396
Taking log on both sides
- n / 2 = log .00396
n / 2 = 2.4
n = 5 approx