Choices 'C' and 'D' are both correct.
(Except in 'C', changing the temperature from 1°C to 3°C is not usually
described as 'cooling', and it's not the water's 'mass' that changes. But
water does contract in volume during that change.)
However instead of crests and troughs, longitudinal waves have compressions and rarefactions. Compression. A compression is a region in a longitudinal wave where the particles are closest together. Rarefaction. A rarefaction is a region in a longitudinal wave where the particles are furthest apart.
Answer:
speed of car after collision, v2 =16.1 m/s and of the truck, v1 = 4.6 m/s
Explanation:
Given:
mass of truck M = 1370 kg
speed of truck = 12.0 m/s
mass of car m = 593 kg
collision is elastic therefore,
Applying law of momentum conservation we have
momentum before collision = momentum after collision
1370×12 + 0( initially car is at rest) = 1370×v1+ 593×v2 ....(i)
Also for a collision to be elastic,
velocity of approach = velocity of separation
12 -0 = v2-v1 ....(ii)
using (i) and (ii) we have
So speed of car after collision, v2 =16.1 m/s and of the truck, v1 = 4.6 m/s
Answer:
B) Degrees
Explanation:
The directions of the vectors are often defined in terms of due East, due North, due West and due South. A direction exactly in between of North and East can be described as Northeast, similarly we can describe directions in terms of Northwest, Southeast and South west.
From these, the direction of a vector can be easily expressed in degrees, which is measured counter clockwise about its tail from due East. Considering that we can say that East is at 0° , North is at 90° , West is at 180 and South is at 270° counter clockwise rotation from due East.
So, we know that the direction of a vector lying somewhere between due East i.e 0° and due North i.e 90°, will be measured in degrees, which will have a value between 0°-90°
Velocity is define as the time rate taken for a change in acceleration