So you would use the equation Q=cmΔT, where c is the specific heat, m is the mass, and ΔT is change in temperature. Q, or heat added, would equal (0.187)(2.5)(350-45), which simplifies to 142.5875 btu.
Answer:

Explanation:
From the question we are told that
Altitude of 
Magnitude
Altitude of 
Magnitude is 
Distance of cube 
Generally the flux
is mathematical given as


Generally Quantity of charge q is mathematically given as



Answer:
18.6 m/s
Explanation:
= Initial height of the balloon = 11 m
= initial speed of the ball
= initial vertical speed of the ball = 7 m/s
= initial horizontal speed of the ball = 9 m/s
initial speed of the ball is given as

= final speed of the ball as it strikes the ground
= mass of the ball
Using conservation of energy
Final kinetic energy before striking the ground = Initial potential energy + Initial kinetic energy

Answer:
h = 18.41 m
Explanation:
Given that,
Mass of a test rocket, m = 11 kg
Its fuel gives it a kinetic energy of 1985 J by the time the rocket engine burns all of the fuel.
According to the law of conservation of energy,
PE = KE = mgh
h is height will the rocket rise

So, the rocket will rise to a height of 18.41 m.