Answer:
1. T₁ = 500 N
2. T₂ = 866 N
Explanation:
Please see attached photo for the diagram.
Thus, we can obtain obtained the value of T₁ and T₂ as follow:
1. Determination of T₁
Angle θ = 30
Hypothenus = 100 kg
Opposite = T₁ =?
Sine θ = Opposite /Hypothenus
Sine 30 = T₁ / 100
Cross multiply
T₁ = 100 × Sine 30
T₁ = 100 × 0.5
T₁ = 50 Kg
Multiply by 10 to express in Newton
T₁ = 50 × 10
T₁ = 500 N
2. Determination of T₂
Angle θ = 60
Hypothenus = 100 kg
Opposite = T₂ = ?
Sine θ = Opposite /Hypothenus
Sine 60 = T₂ / 100
Cross multiply
T₂ = 100 × Sine 60
T₂ = 100 × 0.8660
T₂ = 86.6 Kg
Multiply by 10 to express in Newton
T₂ = 86.6 × 10
T₂ = 866 N
The required work to hold the crate above the ground is 150 joule.
We need to know about the work done to solve this problem. The work done by an object depends on the force applied and the distance. The work is proportional to force and displacement. It can be written as
W = F . s
where W is work done, F is the force and s is displacement
From the question above, the given parameters are
F = 100 N
s = 1.5
Thus, the required work to hold the crate above the ground can be calculated
W = F . s
W = 100 . 1.5
W = 150 joule
Find more on work at: brainly.com/question/25573309
#SPJ4
Answer:
The motion of the ball relative to the ground is stationary
The motion of the ball relative to the wagon is backwards
Explanation:
To describe the motion of the ball relative to the ground, we note that
Assuming the ball is perfectly round and rotate freely, then we have
Force on the ball due to motion of the wagon = 0 N,
Then by the law of motion, an object will remain at rest when no force is applied to it
Therefore, apart from rotation of the ball, it will remain no displacement relative to the ground.
The motion of the ball relative to the wagon
Relative to the wagon, the ball appears to be moving in the opposite direction to the wagon, that is backwards.
I believe that the less mass/weight there is the least friction there is.