Answer:
A bonding that occurs between high electronegative atoms such are N, F, O and H atoms, is called a hydrogen bond. Hydrogen bond is a very strong bond. (C)
If hydrogen bonds are not formed between H atoms and N, F, O atom, then the atoms interact through dispersion forces (also known as london dispersion forces). Dispersion forces are weak and they are temporary forces formed by overlapping of orbitals. (B)
The artificial fixation of nitrogen (N2) has enormous energy, environmental, and societal impact, the most important of which is the synthesis of ammonia (NH3) for fertilizers that help support nearly half of the world's population.
<h3>Artificial fixation of nitrogen</h3>
a) The equilibrium constant expression is Kp=PCH4 PH2 OP CO×PH 23.
(b) (i) As the pressure increases, the equilibrium will shift to the left so that less number of moles are produced.
(ii) For an exothermic reaction, with the increase in temperature, the equilibrium will shift in the backward direction.
(iii) When a catalyst is used, the equilibrium is not disturbed. The equilibrium is quickly attained
To learn more about equilibrium constant visit the link
brainly.com/question/10038290
#SPJ4
Is this a multi choice question?????????????????????
Answer:
A) CH3CH2CH2CH2CH2CH2OH
Explanation:
For this question, we have the following answer options:
A) CH3CH2CH2CH2CH2CH2OH
B) (CH3CH2)2CH(OH)CH2CH3
C) (CH3CH2)2CHOHCH3
D) (CH3CH2)3COH
E) (CH3CH2)2C(CH3)OH
We have to remember the<u> reaction mechanism</u> of the substitution reaction with
. <em>The idea is to generate a better leaving group in order to add a "Br" atom.</em>
The
attacks the "OH" generation new a bond to P (O-P bonds are very strong), due to this new bond we will have a better leaving group that can remove the oxygen an allow the attack of the Br atom to generating a new C-Br bond. This is made by an <u>Sn2 reaction</u>. Therefore we will have a faster reaction with <u>primary substrates</u>. In this case, the only primary substrate is molecule A. So, <em>"CH3CH2CH2CH2CH2CH2OH"</em> will react faster.
See figure 1
I hope it helps!