<span>v(4 seconds)= 300 m/s - 9.8 (m/s^2)(4s) = 260.8 m/s </span>, hope this helps:)
Answer: 211.059 m
Explanation:
We have the following data:
The angle at which the ball leaves the bat
The initial velocity of the ball
The acceleration due gravity
We need to find how far (horizontally) the ball travels in the air: 
Firstly we need to know this velocity has two components:
<u>Horizontally:</u>
(1)
(2)
<u>Vertically:</u>
(3)
(4)
On the other hand, when we talk about parabolic movement (as in this situation) the ball reaches its maximum height just in the middle of this parabola, when
and the time
is half the time it takes the complete parabolic path.
So, if we use the following equation, we will find
:
(5)
Isolating
:
(6)
(7)
(8)
Now that we have the time it takes to the ball to travel half of is path, we can find the total time
it takes the complete parabolic path, which is twice
:
(9)
With this result in mind, we can finally calculate how far the ball travels in the air:
(10)
Substituting (2) and (9) in (10):
(11)
Finally:
The source and the observer are moving towards each other. The observer is moving toward the source. The source is moving away from the observer
Answer:
y = 43.55 + 2.15t
Explanation:
We were told that in 1983, the per capita consumption was 37.1 pounds, and in 1989 it was 50 pounds.
If we assume t = 0 corresponds to year 1980. Then, for 1983 it will be t = 3 and for 1989,it will be t = 9.
Thus, expressing the information as ordered pairs, we have; (3,37. 1) and (9,50).
Let us now find slope of the linear function:
m1 = (y2 - y1)/(t2 - t1)
m1 = (50 - 37.1)/(9 - 3)
m1 = 2.15
So, we can find the linear equation as;
y - 37.1 = 2.15(t - 3)
y = 37.1 + 2.15t - 6.45
y = 43.55 + 2.15t