Answer:
k = 3.5 N/m
Explanation:
It is given that the time period the bob in pendulum is the same as its time period in spring mass system:


where,
k = spring constant = ?
g = acceleration due to gravity = 9.81 m/s²
m = mass of bob = 125 g = 0.125 kg
l = length of pendulum = 35 cm = 0.35 m
Therefore,

<u>k = 3.5 N/m</u>
Answer:
inelastic, since the girl moves in the same direction as the thrown ball
Explanation:
yess this ok
UwU
Keremiad<span> is a long literary work, usually in prose, but sometimes in verse, in which the author bitterly laments the state of society and its morals in a serious tone of sustained invective, and always contains a prophecy of society's imminent downfall. </span>
When the activation energy of an exothermic reaction decreases at a given temperature, the reaction rate increases because the <span>number of successful effective collisions is higher. More of the reactants collide and are able to form products. Hope this answers the question. have a nice day.</span>
Answer:
This means that the kinetic energy of second object is 48times that of the first object
Explanation:
Kinetic energy is the energy possessed by a body by virtue of its motion e.g motion of an accelerating car. Mathematically,
Kinetic energy = 1/2mv² where;
m is the mass of the object
v is the velocity of the object
If Object 1 of mass m moves with speed v in the positive direction, its kinetic energy will be expressed as;
K1 = 1/2mv²
For Object 2 of mass 3m moving with speed 4v in the negative x-direction, its kinetic energy can be expressed as;
K2 = 1/2(3m)(4v)²
K2 = 1/2(3m)(16v²)
K2 = (3m)(8v²)
K2 = 24mv²
To compare the kinetic energy of both bodies, we will take the ratio of K2:K1 to have;
K2/K1 = 24mv²/(1/2)mv²
K2/K1 = 24/(1/2)
K2/K1 = 48
K2 = 48K1
This means that the kinetic energy of second object is 48times that of the first object and moving in the negative x direction since the body of mass 3m initially moves in the negative x direction.