V=IR
60-V
The current that passes through a 10-ohm resistor = I
I=60/10
6 amperes
Answer:
6.86 × 10²⁴ kg
Explanation:
The mass of the earth m = density of earth, ρ × volume of earth, V
m = ρV
The density of the earth, ρ = 5515 kg/m³ and since the earth is a sphere, its volume is the volume of a sphere V = 4πr³/3 where r = radius of the earth = 6.67 × 10⁶ m
Since m = ρV
m = ρ4πr³/3
So, substituting the values of the variables into the equation for the mass of the earth, m, we have
m = 5515 kg/m³ × 4π(6.67 × 10⁶ m)³/3
m = 5515 kg/m³ × 4π × 296.741 × 10¹⁸ m³/3
m = 5515 kg/m³ × 1189.9639π × 10¹⁸ m³/3
m = 6546105.64378π × 10¹⁸ kg/3
m = 20565197.400122 × 10¹⁸ kg/3
m = 6855065.8 × 10¹⁸ kg
m = 6.8550658 × 10²⁴ kg
m ≅ 6.86 × 10²⁴ kg
<span>We can assume that the horizontal surface has no friction and the pulley is massless. We can use Newton's second law to set up an equation.
F = Ma
F is the net force
M is the total mass of the system
a is the acceleration
a = F / M
a = (mb)(g) / (ma + mb)
a = (6.0 kg)(9.80 m/s^2) / (6.0 kg + 14.0 kg)
a = 58.8 N / 20 kg
a = 2.94 m/s^2
The magnitude of the acceleration of the system is 2.94 m/s^2</span>
Answer:
Please find the answer in the explanation
Explanation:
1.) How far is Object Z from the origin at t = 3 seconds
The distance of the object Z from the origin will be the slope of the graph.
Slope = 4/2 = 2m
2.) Which object takes the least time to reach a position 4 meters from the origin ?
According to the graph given to the question above, object Z has the list time which is 2 seconds since object X does not start from the origin.
3.) Which object is farthest from the origin at t = 2 seconds?
The correct answer is still object Z because it has the highest slope.
Answer:
While the bus is moving, luggage tends to remain in inertia of motion state. When the bus stops, the luggage tends to resist the change and due to inertia of motion it moves forward and may fall off. That's why it is advised to tie any luggage kept on the roof of a bus with a rope.