Answer:
The space cadet that weighs 800 N on Earth will weigh 1,600 N on the exoplanet
Explanation:
The given parameters are;
The mass of the exoplanet = 1/2×The mass of the Earth, M = 1/2 × M
The radius of the exoplanet = 50% of the radius of the Earth = 1/2 × The Earth's radius, R = 50/100 × R = 1/2 × R
The weight of the cadet on Earth = 800 N

Therefore, for the weight of the cadet on the exoplanet, W₁, we have;

The weight of a space cadet on the exoplanet, that weighs 800 N on Earth = 1,600 N.
16/9 m/s^2
negative 4/3 m/s^2
14 m/s
the last one is too detailed to do in my head while on the bus; sorry
Answer:
B it decreases
Explanation:
the movement of a positive test charge in the direction of an electric field would be like a mass falling downward within Earth's gravitational field. Both movements would be like going with nature and would occur without the need of work by an external force. This motion would result in the loss of potential energy
It could result in it not being good for your joints, as well as in the long run but shouldn't cause problems when your a child. I hope this helps your question!
Answer: Gamma rays
Explanation: The given waves belong to the electromagnetic spectrum which consists of different electromagnetic radiations arranged in terms of increasing wavelengths or decreasing frequencies.


Thus 
E= energy
= frequency
c = speed of light
= wavelength
Thus frequency and wavelength are inversely related. The waves having high energies ave high frequencies and have shorter wavelengths.
Thus gamma rays having highest energy have highest frequency and shortest wavelength.