Answer : Option C) 0.3 mol of Gold.
Explanation : Amongst the options given in the question, 0.3 mol of Au is the greatest in mass in grams.
As 0.3 mol X atomic weight of Au (196.966) = 59.088 grams;
Silver has 0.5 mol X atomic weight of Ag (107.86) = 53.93 grams;
The other options are not relevant as they deal in the atomic range which has mass value very less as compared to the moles of elements.
Therefore, it is clear that Au has the greatest mass amongst the given choices.
Answer:
They have the same mass
Explanation:
The two blocks have the same mass. Mass is the quantity of matter contained in a substance. Therefore, the two bodies have the same mass.
The weight is a measure of mass and gravity. The gravity on earth differs from that on the moon. Therefore, the two bodies have different weights.
Their volume is also different since one body is larger than the other. Therefore, density which is the mass per unit volume will also differ.
Answer:
I > III > II
Explanation:
I) A disulfide bond between two cystines is created when a sulfur atom from one cystine forms a strong, single covalent bond with a sulfur atom from a second cystine. When a disulfide bond is created, each cystine loses one hydrogen atom. The atom count is 11 for a cystine in mid-chain, but changes to 10 if the cystine joins with another in a disulfide bond. This lead to a much more stable intermolecular interaction.
III) Hydrogen Bonding in water
These hydrogen bonds are at best an interaction, inducing slight positive and negative charges in the Hydrogen and Oxygen/Nitrogen atoms.
The Hydrophilic amino acids have O & N atoms, which form hydrogen bonds with water. These atoms have an uneven distribution of electrons, creating a polar molecule that can interact and form hydrogen bonds with water.
The hydrogen bonds aren't as strong as the covalent bonds in disulfides.
II) Hydrophobic interactions between two leucines
A hydrophobic interaction is formed between two nonpolar molecules.
It describes the preference of nonpolar molecular surfaces to interact with other nonpolar molecular surfaces, thereby displacing water molecules from the interacting surfaces.
Answer:
2 and 3 because there are the protons and neutrons which have a greater mass than the electrons which are found in the locations 1 and 4. The atom contains a nucleus, which is made from protons and neutrons, and electrons which are found around the nucleus. The mass of the atoms is concentrated in the very tiny space represented by the nucleus. Of course the electrons have a mass too, but is very small compared to the protons and neutrons, and we usually neglect its mass.