Answer:
The forms of energy involved are
1. Kinetic energy
2. Potential energy
Explanation:
The system consists of a ball initially at rest. The ball is pulled down from its equilibrium position (this builds up its potential energy) and then released. The released ball oscillates due to a continuous transition between kinetic and potential energy.
Assuming that reaching a height 0 doesn’t stop the ball, and that it accelerates at 9.8 m/s^2, the ball would be traveling at 0.5 + 0.7*9.8 = 7.36 m/s downwards.
Answer:
I believe it's True! Brainliest??
Explanation: Hope you have a great day :)
The correct expression for the maximum speed of the object during its motion is
.
<h3>
Maximum speed of the object</h3>
The maximum speed of the object is determined using the following formulas;
v(max) = Aω
where;
- A is the amplitude of the motion
- ω is angular speed
The maximum speed of the object can also be obtained from the maximum net force on the object,
F = ma
where;
- F is the maximum net force
- a is the acceleration
- m is mass of the object
F = m(v/t)
mv = Ft
v = Ft/m
Thus, the correct expression for the maximum speed of the object during its motion is
.
Learn more about maximum speed here: brainly.com/question/4931057