Answer:
When two spheres, each with charge Q, are positioned a distance Rapart, they are attracted to ... doubled, the electric-force between the two spheres
Answer:
2.77 * 10^5 m/s
Explanation:
Let us recall that kinetic energy is given by 1/2 mv^2
Where;
m = mass of the body
v = velocity of the body
In this case,
m = 3.38 * 10^31 kg
KE= 1.30 * 10^42 J
KE = 1/2 mv^2
v = √2KE/m
v = √2 * 1.30 * 10^42/3.38 * 10^31
v = √7.69 * 10^10
v = 2.77 * 10^5 m/s
Answer:
(A) 0.63 J
(B) 0.15 m
Explanation:
length (L) = 0.75 m
mass (m) =0.42 kg
angular speed (ω) = 4 rad/s
To solve the questions (a) and (b) we first need to calculate the rotational inertia of the rod (I)
I = Ic + m
Ic is the rotational inertia of the rod about an axis passing trough its centre of mass and parallel to the rotational axis
h is the horizontal distance between the center of mass and the rotational axis of the rod
I =
)^{2}[/tex]
I =
)^{2}[/tex])
I = 0.07875 kg.m^{2}
(A) rods kinetic energy = 0.5I
= 0.5 x 0.07875 x
= 0.63 J 0.15 m
(B) from the conservation of energy
initial kinetic energy + initial potential energy = final kinetic energy + final potential energy
Ki + Ui = Kf + Uf
at the maximum height velocity = 0 therefore final kinetic energy = 0
Ki + Ui = Uf
Ki = Uf - Ui
Ki = mg(H-h)
where (H-h) = rise in the center of mass
0.63 = 0.42 x 9.8 x (H-h)
(H-h) = 0.15 m
Below are the choices:
<span> A) The box will slow down.
B) The box's velocity will be 1 m/s.
C) The box's velocity will not change.
D) The box will experience acceleration
</span>
The answer is D) The box will experience acceleration
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.