<span>The problem has to do with oxidation states of the matter. The oxidation state of oxygen will always be -2 with the exception of peroxides which will have a state of -1. The overall balanced state of chemical compounds will be 0, so the oxidation state of Mn in MnO2 will be +4. The oxidation state of MnO4- will then be +7 to balance out to the negative one charge. The state change from +4 to +7 is 3, thus three electrons have to be lost in order for this to happen; a loss of a charge of -3 results in an increase of charge of 3. Oxidation is always the process of 'losing' electrons.
</span><span>E] MnO2(s) MnO4-(aq</span>
Answer: You can increase the weight, then test the speed, and make the weight normal and test the speed, and mark which one travels faster.
Explanation: This would test your hypothesis by comparing the speeds of the cars when more mass is added. Calculating the difference of the speed with more mass, and the speed with normal mass would give you your answer. A positive number would prove your hypothesis and a negative number would disprove it.
Answer : The number of moles of solute
is, 0.0788 moles.
Explanation : Given,
Molarity = 0.225 M
Volume of solution = 0.350 L
Formula used:

Now put all the given values in this formula, we get:


Therefore, the number of moles of solute
is, 0.0788 moles.
Answer:
9.1 = basic 1.2= very acidic 5.7= acidic
Explanation:
Answer:
1 temperature 2 weather 3 the stratosphere 4 decreases 5 increases
Explanation: