Answer:
Individual solute particles are broken apart from the solid by the;
c. Solvent
Explanation:
A solution is the homogeneous mixture that is made up of two or more substances formed by dissolving a substance which can be a solid, liquid or gas in another substance known as the solvent which normally the larger part of the fraction of the solution than the solute and can also be a solid, liquid or a gas
In a solution the solvent particles serves to brake of and disperser parts of a solid solute to form a more or less homogeneous mixture
Therefore, the solute particles are broken by the <u>solvent</u> particles in a solution
Answer:
Normal cells are either repaired or die (undergo apoptosis) when they are damaged or get old. Cancer cells are either not repaired or do not undergo apoptosis.
Explanation:
Answer:
(a) 7.11x10⁻⁴ M/s
(b) 2.56 mol.L⁻¹.h⁻¹
Explanation:
(a) The reaction is:
O₃(g) + NO(g) → O₂(g) + NO₂(g) (1)
The reaction rate of equation (1) is given by:
(2)
<u>We have:</u>
k: is the rate constant of reaction = 3.91x10⁶ M⁻¹.s⁻¹
[O₃]₀ = 2.35x10⁻⁶ M
[NO]₀ = 7.74x10⁻⁵ M
Hence, to find the inital reacion rate we will use equation (2):
Therefore, the inital reaction rate is 7.11x10⁻⁴ M/s
(b) The number of moles of NO₂(g) produced per hour per liter of air is:
t = 1 h
V = 1 L
![\frac{\Delta[NO_{2}]}{\Delta t} = rate](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%5BNO_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%20%3D%20rate)
![\frac{\Delta[NO_{2}]}{\Delta t} = 7.11 \cdot 10^{-4} M/s*\frac{3600 s}{1 h} = 2.56 mol.L^{-1}.h{-1}](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%5BNO_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%20%3D%207.11%20%5Ccdot%2010%5E%7B-4%7D%20M%2Fs%2A%5Cfrac%7B3600%20s%7D%7B1%20h%7D%20%3D%202.56%20mol.L%5E%7B-1%7D.h%7B-1%7D)
Hence, the number of moles of NO₂(g) produced per hour per liter of air is 2.56 mol.L⁻¹.h⁻¹
I hope it helps you!
When I was on the phone with my bio teacher I asked she said endothermic
Answer is: <span>the molarity of the diluted solution 0,454 M.
</span>V₁(NaOH) = 100 mL ÷ 1000 mL/L = 0,1 L.
c₁(NaOH) = 0,75 M = 0,75 mol/L.
n₁(NaOH) = c₁(NaOH) · V₁(NaOH).
n₁(NaOH) = 0,75 mol/L · 0,1 L.
n₁(NaOH) = 0,075 mol
n₂(NaOH) = n₁(NaOH) = 0,075 mol.
V₂(NaOH) = 165 mL ÷ 1000 mL/L = 0,165 L.
c₂(NaOH) = n₂(NaOH) ÷ V₂(NaOH).
c₂(NaOH) = 0,075 mol ÷ 0,165 L.
c₂(NaOH) = 0,454 mol/L.