1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anit [1.1K]
3 years ago
7

We mix 0.08 moles of chloroacetic acid (ClCH2COOH) and 0.04 moles of

Chemistry
1 answer:
Arte-miy333 [17]3 years ago
3 0

Answer:

A. pH using molar concentrations = 2.56

B. pH using activities                      = 2.46

C. pH of mixture                              = 2.56

Explanation:

A. pH using molar concentrations

ClCH₂COOH + H₂O ⇌ ClCH₂COO⁻ + H₃O⁺

        HA        + H₂O ⇌          A⁻         + H₃O⁺

We have a solution of 0.08 mol HA and 0.04 mol A⁻

We can use the Henderson-Hasselbalch equation to calculate the pH.

\begin{array}{rcl}\text{pH} & = & \text{pK}_{\text{a}} + \log \left(\dfrac{[\text{A}^{-}]}{\text{[HA]}}\right )\\\\& = & 2.865 +\log \left(\dfrac{0.04}{0.08}\right )\\\\& = & 2.865 + \log0.50 \\& = &2.865 - 0.30 \\& = & \mathbf{2.56}\\\end{array}

B. pH using activities

(i) Calculate [H⁺]

pH = -log[H⁺]

\text{[H$^{+}$]}  = 10^{-\text{pH}} \text{ mol/L} = 10^{-2.56}\text{ mol/L} = 2.73  \times 10^{-3}\text{ mol/L}

(ii) Calculate the ionic strength of the solution

We have a solution of 0.08 mol·L⁻¹ HA, 0.04 mol·L⁻¹ Na⁺, 0.04 mol·L⁻¹ A⁻, and 0.00273 mol·L⁻¹ H⁺.

The formula for ionic strength is  

I = \dfrac{1}{2} \sum_{i} {c_{i}z_{i}^{2}}\\\\I = \dfrac{1}{2}\left [0.04\times (+1)^{2} + 0.04\times(-1)^{2} +  0.00273\times(+1)^{2}\right]\\\\=  \dfrac{1}{2} (0.04 + 0.04 + 0.00273) = \dfrac{1}{2} \times 0.08273 = 0.041

(iii) Calculate the activity coefficients

\ln \gamma = -0.510z^{2}\sqrt{I} = -0.510(-1)^{2}\sqrt{0.041} = -0.510\times 0.20 = -0.10\\\gamma = 10^{-0.10} = 0.79

(iv) Calculate the initial activity of A⁻

a = γc = 0.79 × 0.04= 0.032

(v) Calculate the pH  

\begin{array}{rcl}\text{pH} & = & \text{pK}_{\text{a}} + \log \left(\dfrac{a_{\text{A}^{-}}}{a_{\text{[HA]}}}\right )\\\\& = & 2.865 +\log \left(\dfrac{0.032}{0.08}\right )\\\\& = & 2.865 + \log0.40 \\& = & 2.865 -0.40\\& = & \mathbf{2.46}\\\end{array}\\

C. Calculate the pH of the mixture

The mixture initially contains 0.08 mol HA, 0.04 mol Na⁺, 0.04 mol A⁻, 0.05 mol HNO₃, and 0.06 mol NaOH.

The HNO₃ will react with the NaOH to form 0.05 mol Na⁺ and 0.05 mol NO₃⁻.

The excess NaOH will react with 0.01 mol HA to form 0.01 mol Na⁺ and 0.01 mol A⁻.

The final solution will contain 0.07 mol HA, 0.10 mol Na⁺, 0.05 mol A⁻, and 0.05 mol NO₃⁻.

(i) Calculate the ionic strength

I = \dfrac{1}{2}\left [0.10\times (+1)^{2} + 0.05 \times(-1)^{2} +  0.05\times(-1)^{2}\right]\\\\=  \dfrac{1}{2} (0.10 + 0.05 + 0.05) = \dfrac{1}{2} \times 0.20 = 0.10

(ii) Calculate the activity coefficients

\ln \gamma = -0.510z^{2}\sqrt{I} = -0.510(-1)^{2}\sqrt{0.10} = -0.510\times 0.32 = -0.16\\\gamma = 10^{-0.16} = 0.69

(iii) Calculate the initial activity of A⁻:

a = γc = 0.69 × 0.05= 0.034

(iv) Calculate the pH

\text{pH} = 2.865 + \log \left(\dfrac{0.034}{0.07}\right ) = 2.865 + \log 0.49 = 2.865 - 0.31 = \mathbf{2.56}

You might be interested in
Plz answer this i will mark brainly like and ratr
matrenka [14]

Answer:

answer what ?

Explanation:

4 0
3 years ago
Enter your answer in the provided box. From the data below, calculate the total heat (in J) needed to convert 0.304 mol of gaseo
diamong [38]

Answer:

-35,281.5 J

Explanation:

To convert the gaseous ethanol to liquid ethanol, three steps will occur. First, it will lose heat and the temperature will decrease until its boiling point, so from 300.0°C to 78.5°C. Thus, more heat will be lost, but now, with the temperature constant, so the gas will be converted to liquid. And then, the liquid will lose heat to decrease the temperature from 78.5°C to 25.0°C.

The total heat loss is the sum of the heats of each step. Because the heat is being removed from the system, it's negative. The first and last step occurs with a change in temperature, and so the heat is calculated by:

Q = m*c*ΔT

Where m is the mass, c is the specific heat of the gas (first step) or liquid (last step), and ΔT the temperature variation (final - initial). The mass of ethanol is the molar mass 46.07 g/mol multiplied by the number of moles, so:

m = 46.07 * 0.304 = 14.00 g

The second step occurs without a change in temperature, and the heat is then:

Q = -n*ΔH°vap

Where n is the number of moles, ΔH°vap is the heat of vaporization, and the minus signal indicates that the heat is being lost. Then, the heat of each step is:

Q1 = 14.00*1.43*(78.5 - 300,0) = -4434.43 J

Q2 = -0.304*40.5 = -12.312 kJ = -12312 J

Q3 = 14.00*2.45*(25.0 - 78.5) = -1835.05 J

Q = Q1 + Q2 + Q3

Q = -35,281.5 J

5 0
3 years ago
Electrons involved in bonding between atoms are _____.
never [62]
Valence électrons = are electrons in the outermost shell that is responsible for the chemical reactions of the atoms
8 0
3 years ago
Whats the answer????
Lena [83]

Answer:

im trynna find it out to mamasss

Explanation:

5 0
3 years ago
Margret claimed that she needed 5.45 moles of Potassium Chloride, KCl to complete her experiment. How many grams of KCl does she
zubka84 [21]

Answer:

loiuygfcx

Explanation:

3 0
3 years ago
Other questions:
  • How many electrons are in the highest energy orbital of the element copper?
    13·1 answer
  • Lons are defined as ____
    6·2 answers
  • 6. a) Why is isocyanic acid prepared ""in situ"" in the Dulcin experiment? [2 pts] b) Draw a plausible Lewis structure for isocy
    15·1 answer
  • Would argon or chlorine act more like an ideal gas
    15·1 answer
  • Please help me with this chemistry question, image attached
    10·1 answer
  • How much water must be added to 424 mL of 0.189 M HCl to produce a 0.140 M solution?
    15·1 answer
  • Pfffffffffffffffffffffffffffft
    9·1 answer
  • What is the molarity of a solution prepared from 85. 0 g cacl2 in 300. 0 g of solution? the density of the solution is 1. 05 g/m
    5·1 answer
  • Preparation of ammonia gas<br>​
    9·1 answer
  • Sulfur has an oxidation number of +6 in which two formulas?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!