Answer:
D. 3
Step-by-step explanation:
Assuming the model represents an equation, the following can be deduced:
On the left side of the equation, the model shows we have 3 "x's", and 6 "1's". Let this represent:
3x + 6
On the right side of the equation, we have 2 "x's" and 9 "1's". Let this represent:
2x + 9.
The model would represent the equation below:

Solve for x
(Subtracting 2x from both sides of the equation)

(subtracting 6 from both sides of the equation)

Answer:
2nd choice
Step-by-step explanation:
Answer:
its 0.3
Step-by-step explanation:
i got it wrong bcuz i chose something else but trust me its 0.3
brainliest plz
Answer: B. 2 = 3x + 10x2
Step-by-step explanation:
This is the concept of quadratic equations; We required to find the type of equation that can be solved using the model that has been used to solve the equation such that the answer is:
[-3+-sqrt(3^2+4(10)(2))]/(2(10))
The formual that was applied here was a quadratic formula given by:
x=[-b+\-sqrt(b^2-4ac)]/2a
whereby from the our substituted values above,
a=10,b=3 and c=-2
such that the quadratic equation will be:
10x^2+3x-2