Answer:
False
Explanation:
In addition to stars, our galaxy contains abundant diffuse matter that is distributed throughout its volume and constitutes what we call the interstellar medium. This medium plays a fundamental role in the life cycle of the stars, since it is where the matter from which they are born resides, and it is the place to which it returns when the stars expel their outer layers at death.
The interstellar medium is a complex environment. <u>Its matter is </u><u>not </u><u>distributed uniformly</u>, but consists of different phases with temperatures ranging from a few degrees Kelvin (near absolute zero) in the areas of star formation to the millions of degrees Kelvin observed in supernova remnants. The densities of interstellar matter also vary orders of magnitude according to the phase, but they are always so low that they rival those that can be achieved in the best vacuum chambers of terrestrial laboratories. Depending on the density and temperature conditions, interstellar matter is in a molecular, atomic, or ionized state, although the state is not permanent, since matter circulates between the different phases in a continuous cycle of evolution on a galactic scale.
Due to the very different characteristics of its multiple phases, the interstellar medium has to be studied using various observational techniques and different types of telescopes. The coldest components of the interstellar medium do not emit visible light, and require the observation of telescopes sensitive to the weak emission of radio waves that this material produces. Using different radio telescopes, such as the 40-meter diameter of the Yebes Observatory, which the Institute of Radio Astronomy Millimeter, to which the IGN belongs, has in Grenoble and Granada, or the recently opened Atacama Large Millimeter / submillimeter Array in the Atacama desert in Chile, astronomers from the National Astronomical Observatory contribute to characterize the physical and chemical properties of the molecular clouds where stars are born and of the circumestellar shells produced by the stars in the last stages of their lives . The study of these regions is helping to complete our knowledge of the most unknown phases of the complex life cycle of stars.
Answer:
Wavelength of the sound wave that reaches your ear is 1.15 m
Explanation:
The speed of the wave in string is

where T= 200 N is tension in the string ,
=1.0 g/m is the linear mass density


Wavelength of the wave in the string is

The frequency is

The required wavelength pf the sound wave that reaches the ear is( take velocity of air v=344 m/s)

<span>The 23.5 degree tilt is responsible for the seasons. If the earth had no tilt there would not be seasons. If the earth was tilted by 90 degrees the seasonal changes would be at the most extreme. The Earth's pole would point directly at the sun at a point on the track around the sun. As the Earth revolves around the Sun the pole would alternate twice each year between pointing directly at the sun and being perpendicular to the sun.
I hope this helps you!
xo, Leafling</span>
Answer:
v = 134.06 m/s
Explanation:
Given that,
Radius of a circular track is 1,835 m
Time required to complete one lap around a perfectly circular track is 86 seconds
We need to find the car's velocity. Velocity is equal to,
v=d/t
On circular path,

So, car's velocity is 134.06 m/s.
Answer:
Part a)

Part b)

Explanation:
Part a)
As we know that both charge particles will exert equal and opposite force on each other
so here the force on both the charges will be equal in magnitude
so we will have

here we have

now we have

Part b)
Now for the force between two charges we can say

now we have

now we have
