Answer:
An orbital is a region in space where there is a high probability of finding an electron.
Explanation:
The orbital is a concept that developed in quantum mechanics. Recall that Neils Bohr postulated that the electron occupied stationary states which he called energy levels. Electrons emit radiation when the move from a higher to a lower energy level. Similarly, energy is absorbed by an electron to move from a lower to a higher orbit.
This idea was upturned by the Heisenberg uncertainty principle. This principle state that the momentum and position of a particle can not be simultaneously measured with precision.
Instead of defining a 'fixed position' for the electron, we define a region in space where there is a possibility of finding an electron with a certain amount of energy. This orbital is identified by a set of quantum numbers.
Answer: D. transverse
Explanation:
Light is a transverse wave, while sound is a longitudinal wave.
Answer:
Sodium peroxide can be prepared on a large scale by the reaction of metallicsodium with oxygen at 130–200 °C, a process that generates sodium oxide, which in a separate stage absorbs oxygen: 4 Na + O2 → 2 Na2O. The ozone oxidizes the sodium to form sodium peroxide.
Answer:
A water molecule can react with the carbonyl group of an aldehyde or a ketone to form a substance known as a carbonyl hydrate, as shown in the first reaction below. The carbonyl hydrates usually form a very small percentage of the molecules in a sample of a specific aldehyde or ketone.
(Nice profile pic also UwU)
It easier to remove electrons from a large element(bottom of the periodic table) because there further away from the nucleus.