Answer:
New volume of the baloon is 0.02325m^3
Explanation:
To answer this question we need to know the ideal gas law, which says:
p•V = n•R•T
p is pressure, V is volume, n is amount of substance (in moles), R is constant value and T is temperature.
Since it's stated that n and T are constant, and we know that R is a constant too, that means that p•V = constant value. Basically, that means that p1•V1 (pressure and volume before the pressure increase) equals to p2•V2 (pressure and volume after the pressure increase).
That means that:
100000 Pa • 0.0279 m^3 = 120000 Pa • V2. Next, V2= 100000•0.0279/120000. So, V2=0.02325m^3.
Answer:
215955.06 m/s^2
Explanation:
length of barrel, s = 0.89 m
initial velocity of the bullet, u = 0 m/s
Final velocity of the bullet, v = 620 m/s
Let a be the acceleration of the bullet in the barrel
Use third equation of motion, we get


a = 215955.06 m/s^2
Thus, the acceleration of the bullet inside the barrel is 215955.06 m/s^2.
32.5 kg of air
Explanation:
To calculate the mass of the air, we use the density formula:
density = mass / volume
mass = density × volume
density of air = 1.3 kg/m³
volume = 5 × 3 × 2 = 25 m³
mass of the air = 1.3 kg/m³ × 25 m³
mass of the air = 32.5 kg
Learn more about:
density
brainly.com/question/952755
brainly.com/question/12982373
#learnwithBrainly
Answer:
Rs = 0.02008 Ω = 20.08 mΩ
Explanation:
The range of an ammeter can be increased by connecting a small shunt resistance to it in a series combination. This shunt resistance can be calculated by the following formula:

where,
= value of shunt resistance = ?
= current range of ammeter = 20 mA = 0.02 A
I = Required range of ammeter = 5 A
= Resistance of ammeter = 5 ohms
Therefore,

<u>Rs = 0.02008 Ω = 20.08 mΩ</u>