Answer:
1.t=-1.96sec
2.H=4.8m
3.T=1.96sec
4.R=19.2m
Explanation:
u=9.8,t=?,sin theta=1
using formula t=2usintheta/g
t=2x9.8x1=19.6/10
t=1.96seconds
using formula H=u(squared)sin(squared)theta/2g
H=9.8(squared)x1(squared)/2x10
H=96x1/20
H=96/20
H=4.8m
using formula T=2usintheta/g
T=2x9.8x1/10
T=19.6/10
T=1.96sec
using the formula R=u(squared)sin2theta/g
R=9.8(squared)x2/10
R=96x2/10
R=192.08/10
R=19.2
Answer:
E=1100V/m
Explanation:
Given required <u>solution</u>
V=6.6v E=? V=Ed ; V is the potential difference between
d=D/2=1.2cm/2=0.6cm=0.006m the halfway
E is the electric field between the two
plates.
d is the distance between the halfway.
So we can use the above formula to calculate the electric field.
V=Ed from this E=V/d substitute the values from the given equation.
E=6.6v/0.006m
E= 1100 v/m
I think it’s C) lmk if I’m wrong
Hopefully this will help you.
Do the same for disc. Moment of Inertia of disc about its axis = MR²/2