Answer:

Explanation:
<h3><u>Given data:</u></h3>
Acceleration = a = 3 m/s²
Force = F = 150 N
<h3><u>Required:</u></h3>
Mass = m = ?
<h3><u>Formula:</u></h3>
F = ma
<h3><u>Solution:</u></h3>
Put the givens in the formula
150 = m (3)
Divide 3 to both sides
150/3 = m
50 kg = m
m = 50 kg
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:

Explanation:
From the question we are told that:
Altitude 
Mass 
Radius 
Generally the equation for Satellite Speed is mathematically given by



Therefore
Period T is Given as



Answer:
F = - 2 A x - B
Explanation:
The force and potential energy are related by the expression
F = - dU / dx i ^ -dU / dy j ^ - dU / dz k ^
Where i ^, j ^, k ^ are the unit vectors on the x and z axis
The potential they give us is
U (x) = A x² + B x + C
Let's calculate the derivatives
dU / dx = A 2x + B + 0
The other derivatives are zero because the potential does not depend on these variables.
Let's calculate the strength
F = - 2 A x - B
<h2>
Answer:</h2>
<em>Hello, </em>
<h3><u>QUESTION)</u></h3>
According to the second Newton's Law,
<em>✔ We have : F = m x a ⇔ m = F/a </em>
The mass of the object is therefore 200 kg.
Answer:
391.5 J
Explanation:
The amount of work done can be calculated using the formula:
- W = F║d
- where the force is parallel to the displacement
Looking at the formula, we can see that the mass of the object does not affect the work done on it.
Substitute the force applied and the displacement of the object into the equation.
- W = (87 N)(4.5 m)
- W = 391.5 J
The amount of work done on the object is 391.5 J in order to move it 4.5 meters with an applied force of 87 Newtons.