Answer:
a. The spheres will attract each other.
Explanation:
When two conducting spheres are connected by a conducting wire and a negatively charged rod is brought near it then this will induce opposite (positive) charge at the nearest point on the sphere and by the conservation of charges there will also be equal amount of negative charge on the farthest end of this conducting system this is called induced polarization.
- When the conducting wire which joins them is cut while the charged rod is still in proximity to of one of the metallic sphere then there will be physical separation of the two equal and unlike charges on the spheres which will not get any path to flow back and neutralize.
- Hence the two spheres will experience some amount of electrostatic force between them.
Answer:
None
Explanation:
Subatomic particles are the particles which are very smaller than the atoms. Elementary particles are the examples of subatomic particles.
Elementary particles are the particles without any sub-structure which means they are not composed of other particles.
The elementary particles are classified into three categories which are discussed below:
(1) Quarks: up, down, top, bottom, strange, and charm.
(2) Leptons: muon, muon neutrino, electrons, electron neutrino, tau, tau neutrino.
(3) Bosons: Z bosons, W bosons, Higgs, Gluon, photons.
Mesons are the particles which compose one quark and one anti quarks.
Therefore, in the given list there is no meson.
For any mass m:
a = F/m
v = √2*F/m*s = √2F/sm = k/√m
Momentum = mv = k√m
Energy = 1/ mv² = 1/2 m.k²/m = 1/2k²
SO
Both will have same energy
The larger mass will have greater momentum
Answer:
The angle of incidence when the reflected ray is perpendicular to the incident ray = 45°
Explanation:
According to Snell's Law,
n₁ sin θ₁ = n₂ sin θ₂
When the angle between the incident ray and reflected ray is 90°, the angle of incidence is θ₁ and the angle of reflection, θ₂ = 90° - θ₁ and the index of refraction in the Snell's Law for both media would be the same, n₁ = n₂ = n
n sin θ₁ = n sin (90° - θ₁)
Note that from trigonometric relations,
Sin (90° - θ₁) = cos θ₁
n sin θ₁ = n cos θ₁
(sin θ₁)/(cos θ₁) = 1
tan θ₁ = 1
θ₁ = arctan 1 = 45°
Hope this Helps!!!