Answer:
The density of one halves 11.3 g / cm cube
Explanation:
Density remain same because cutting the bar in half , mass and volume will decrease to half so density will not change .
density =
1) sound velocity reported by you : 292.39 m /s
2) time to travel 1620m at that velocity: t = d / v = 1620 m / 292.39 m/s = 5.54 s, since the moment the sound wave started.
3) You might wanted to tell the time since you watched the lightning.
Then you can calculate the time since the lighting was generated,1620 m away from you, until you saw it, using the speed of light:
speed of light = 3*10^8 m/s => t = 1620 m / (3*10^8m/s) =0.0000054 s
Then, this time is completely neglectible, and yet the answer is 5.54 s, as calculated in the step 2.
Answer: F = mg(1 + 4m / (½M + m))
Explanation:
"At this point seems" unclear. If the particle is at the top of the disc and angular velocity is negligible, then the force would equal the weight of the particle. F = mg
The more interesting question would be what force is needed to keep the particle attached when significant angular rotation has been achieved. The maximum point would be diametrically opposed to the starting point.
I will analyze it there
The potential energy will convert to kinetic energy
mgh = ½Iω²
mg(2R) = ½(½MR² + mR²)ω²
4mgR = R²(½M + m)ω²
ω² = 4mg / (R(½M + m))
With m at the lowest position, the force of attachment must support the weight of m and provide for the needed centripetal acceleration
F = m(g + ω²R)
F = m(g + 4mg / (R(½M + m))R)
F = mg(1 + 4m / (½M + m))
Answer:
Blue, Blue, Blue
Explanation:
I am doing edjunuety right now
Hope this helps
:)