weight less on moon than on earth.
high on lift off - G force
low in orbit.
zero at a point between earth and moon
Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
(4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg
force of gravity = (mass) x (acceleration of gravity) = (360 kg) x (9.8 m/s²) = (360 x 9.8) kg-m<span>/s² </span><span>= </span>3,528 newtons .
Answer:
m= 10 kg a = 52 m / s²
Explanation:
For this problem we must use Newton's second law, let's apply it to each axis
X axis
F - fr = ma
The equation for the force of friction is
-fr = miu N
Axis y
N- W = 0
N = mg
Let's replace and calculate laceration
F - miu (mg) = ma
a = F / m - mi g
a = 527.018 / m - 0.17 9.8
We must know the mass of the body suppose m = 10 kg
a = 527.018 / 10 - 1,666
a = 52 m / s²
It’s A.Longitudinal. Tell me if I’m right