Near Earth's surface, gravitational acceleration is approximately 9.81 m/s2, which means that, ignoring the effects of air resistance, the speed of an object falling freely will increase by about 9.81 metres per second every second.
Answer: 5.31 meters
Explanation: Use conservation of energy. Initial energy equals final energy. Initially, there is only kinetic energy (because height = 0 initially). At the end, kinetic energy equals 0 because at max height, there is max potential energy and the ball stops moving for a split second.
mgh = .5mv^2
Masses cancel out
gh = .5v^2
(9.8)(h) = .5(10.2^2)
Solve for h. h = 5.31 meters
Answer:
Zero
Explanation:
Net force can be defined as the vector sum of all the forces acting on a body or an object i.e the sum of all forces acting simultaneously on a body or an object.
Mathematically, net force is given by the formula;
Where;
Fnet is the net force.
Fapp is the applied force.
Fg is the force due to gravitation.
In this scenario, a stalled car is being pushed up a hill at constant velocity by three people. Thus, the net force on the car is zero because all the forces acting on any physical object is equal to zero and represents a constant velocity; by balancing or cancelling each other out.
According to Sir Isaac Newton's First Law of Motion which is known as Law of Inertia, it states that an object or a physical body in motion will continue in its state of motion at continuous velocity (the same speed and direction) or, if at rest, will remain at rest unless acted upon by an external force.
<span>According to the three laws of planetary motion, planetary orbits are in the shape of an "Ellipse"
In short, Your Answer would be Option B
Hope this helps!</span>
Answer
(C).
When there is an angle between the two directions, the cosine of the angle must be considered.
Step by step Solution
The work done by a force is defined as the product of the force and the distance traveled in the direction of motion.
The first answer "Only the component of the force perpendicular to the motion is used to calculate the work" is wrong because, the force perpendicular to motion does no work.
The second choice "If the force acts in the same direction as the motion, then no work is done" is wrong because the work in the direction of the force is
.
Fourth answer "A force at a right angle to the motion requires the use of the sine of the angle" is wrong because the
meaning that there is no work done in the direction perpendicular to the motion.
The third answer" When there is an angle between the two directions, the cosine of the angle must be considered." is correct because the work is calculated using the force in the direction of the motion. The magnitude of this force is 