The equation for the de Broglie wavelength is:
<span>λ = (h/mv) √[1-(v²/c²)], </span>
<span>where h is Plank's Constant, m is the rest mass, v is velocity, and c is the velocity of light in vacuum. However, if c>>v (and it is, in this case) then the expression under the radical sign approaches 1, and the equation simplifies to: </span>
<span>λ = h/mv. </span>
<span>Substituting, (remember to convert the mass to kg, since 1 J = 1 kg·m²/s²): </span>
<span>λ = (6.63x10^-34 J·s) / (0.0459 kg) (72.0 m/s) = 2.00x10^-34 m.</span>
Answer:
All i kno is that that kid ain't gonna be ok
Explanation:
if u tell me how to do it ill do it
Answer:
The answer is C because there is no friction there will be no friction force only applied and since its on ice you have to account for gravity
Explanation:
Speed = distance / time
S= 40 000m / 5400s
S= 7.41m/s
Answer:
B)
Explanation:
The value the scale shows is the reaction force to the normal force (they are equal by Newton's 3rd Law) that the scale exerts on Eric.
The forces on Eric are his weight (downward) and this normal force (upward), so we can write the net force over him as (also using Newton's 2nd Law):

which means

and for our values this is:
