I don’t think I will have any time to go
it is just a matter of integration and using initial conditions since in general dv/dt = a it implies v = integral a dt
v(t)_x = integral a_{x}(t) dt = alpha t^3/3 + c the integration constant c can be found out since we know v(t)_x at t =0 is v_{0x} so substitute this in the equation to get v(t)_x = alpha t^3 / 3 + v_{0x}
similarly v(t)_y = integral a_{y}(t) dt = integral beta - gamma t dt = beta t - gamma t^2 / 2 + c this constant c use at t = 0 v(t)_y = v_{0y} v(t)_y = beta t - gamma t^2 / 2 + v_{0y}
so the velocity vector as a function of time vec{v}(t) in terms of components as[ alpha t^3 / 3 + v_{0x} , beta t - gamma t^2 / 2 + v_{0y} ]
similarly you should integrate to find position vector since dr/dt = v r = integral of v dt
r(t)_x = alpha t^4 / 12 + + v_{0x}t + c let us assume the initial position vector is at origin so x and y initial position vector is zero and hence c = 0 in both cases
r(t)_y = beta t^2/2 - gamma t^3/6 + v_{0y} t + c here c = 0 since it is at 0 when t = 0 we assume
r(t)_vec = [ r(t)_x , r(t)_y ] = [ alpha t^4 / 12 + + v_{0x}t , beta t^2/2 - gamma t^3/6 + v_{0y} t ]
a) 2.75 s
The vertical position of the ball at time t is given by the equation

where
h = 4 m is the initial height of the ball
u = 12 m/s is the initial velocity of the ball (upward)
g = 9.8 m/s^2 is the acceleration of gravity (downward)
We can find the time t at which the ball reaches the ground by substituting y=0 into the equation:

This is a second-order equation. By solving it for t, we find:
t = -0.30 s
t = 2.75 s
The first solution is negative, so we discard it; the second solution, t = 2.75 s, is the one we are looking for.
b) -15.0 m/s (downward)
The final velocity of the ball can be calculated by using the equation:

where
u = 12 m/s is the initial (upward) velocity
g = 9.8 m/s^2 is the acceleration of gravity (downward)
t is the time
By subsisuting t = 2.75 s, we find the velocity of the ball as it reaches the ground:

And the negative sign means the direction is downward.
Answer:
Similarity: >>Time is independent variable and such is on the x-axis. ... >>Distance time graph tells you how much distance you have travelled, while velocity time graph tells you your acceleration. The difference between them is that the velocity-time graph reveals the speed of an object (and whether it is slowing down or speeding up), while the position-time graph describes the motion of an object over a period of time.
Explanation: