Answer:
c > √(2ab)
Explanation:
In this exercise we are asked to find the condition for c in such a way that the results have been real
The given equation is
½ a t² - c t + b = 0
we can see that this is a quadratic equation whose solution is
t = [c ±√(c² - 4 (½ a) b)] / 2
for the results to be real, the square root must be real, so the radicand must be greater than zero
c² -2a b > 0
c > √(2ab)
ANSWER:
- Transported by blood picked up in the alveoli
- Pumped to cells by ventricles
Hope this helps! :)
Answer:
D
Explanation:
Let’s calculate the kinetic energy for all of the choices.
a. (1/2)(100)(100)^2 = 50(10000)=500,000
b. (1/2)(100)(1)^2 = 50
c. (1/2)(10)(100)^2 = 5(10000) = 50,000
d. (1/2)(1)(1)^2 = 0.5
We can see that (d) has the least kinetic energy.
Answer:
![[\psi]= [Length^{-3/2}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%3D%20%5BLength%5E%7B-3%2F2%7D%5D)
- This means that the integral of the square modulus over the space is dimensionless.
Explanation:
We know that the square modulus of the wavefunction integrated over a volume gives us the probability of finding the particle in that volume. So the result of the integral

must be dimensionless, as represents a probability.
As the differentials has units of length
for the integral to be dimensionless, the units of the square modulus of the wavefunction has to be:
![[\psi]^2 = [Length^{-3}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%5E2%20%3D%20%5BLength%5E%7B-3%7D%5D)
taking the square root this gives us :
![[\psi] = [Length^{-3/2}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%20%3D%20%5BLength%5E%7B-3%2F2%7D%5D)
Most ejections originate from active regions on the Sun's surface, such as groupings of sunspots associated with frequent flares. These regions have closed magnetic field lines, in which the magnetic field strength is large enough to contain the plasma.